
Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 367

Part III
Payment System

Overview

Introduction Part III presents the description and processing of the payment system portion of the SET
protocol, including all messages related to authorization, capture, and management of the
payment system.

Organization Part III includes the following chapters:

Chapter Title Contents Page

1 Common Data and Flows Presents data structures used
throughout the protocol, and
describes the message flows
embodied in the protocol.

368

2 Cardholder/Merchant
Messages

Describes the messages exchanged
between the Cardholder and Merchant
applications in the course of the
protocol.

404

3 Merchant/Payment Gateway
Messages

Describes the messages exchanged
between the Merchant and Payment
Gateway applications in the course of
the protocol.

464

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 368 as of January 2, 2000

Chapter 1
Common Data and Flows

Overview

Introduction Chapter 1 presents the data structures common to payment messages, and presents the
message flow model for the payment system.

Organization Chapter 1 includes the following sections:

Section Title Contents Page

1 Data Structures Presents data structures common to
multiple payment messages.

369

2 General Flow Presents a summary of a typical payment
flow, plus a summary of all messages
which may be present in payment system
flows.

400

Notation The notation used in the data structure tables (such as Table 1 on page 370) is presented in
Part I on page 93.

Date format Any SET application that receives a date that contains fractional seconds shall retain the
fractional seconds to use in subsequent response messages. That is, copy the date exactly as
sent.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 369

Section 1
Data Structures

Definition SET messages include several data structures that bear data items which recur from message
to message, representing control structures, recurring application data, etc.

The following tables define logically-related groups of fields that appear in more than one
message. These definitions are presented here for ease of reference.

Data Structure Page

TransIDs 370

PI (Payment Instructions) 371

InstallRecurData 377

AuthToken 378

AcqCardMsg 379

CapToken 380

PANData 381

PANToken 382

SaleDetail 383

CommercialCardData 385

MarketAutoCap 387

MarketHotelCap 390

MarketTransportCap 392

Location 394

RRTags 395

BatchStatus 396

TransactionDetail 398

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 370 as of January 2, 2000

TransIDs

Purpose TransIDs provides all the data necessary to uniquely identify the transaction of which the
message is a part. In particular, TransIDs enables an entity to relate each message to the
transaction of which it is a part as well as to the request/response pair (since the
request/response pairs can occur only once in each transaction).

TransIDs data

TransIDs {LID-C, [LID-M], XID, PReqDate, [PaySysID], Language }
LID-C Local ID; convenience label generated by and for Cardholder

system

LID-M Local ID; convenience label generated by and for Merchant system.

XID Globally unique ID.

PReqDate Date of purchase request; generated by Merchant in PInitRes or by
Cardholder in PReq.

PaySysID Used by some payment card brands to label transaction from time of
authorization onward

Language Cardholder’s natural language

Table 1: TransIDs Data

LID-C, LID-M,
and PaySysID

LID-C, LID-M, and PaySysID are identifiers which are assigned, respectively, by the
Cardholder, Merchant, and payment system infrastructure to tag transactions in a manner
convenient for each of them; however, other parties may not assume characteristics of these
labels. LID-M may often be used to hold the Merchant’s order number associated with the
transaction.

Generating XID XID is a transaction ID usually generated by the Merchant system, unless there is no
PInitRes , in which case it is generated by the Cardholder system. It is a randomly-generated
20-byte variable that is globally unique (statistically). Merchant and Cardholder systems
shall use appropriate random number generators to ensure the global uniqueness of XID.

PReqDate and
Language

PReqDate provides the date of the transaction start and Language provides the language
the Cardholder requests for the transaction. They are included here for convenience so that
they travel with each message.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 371

PI (Payment Instructions)

Purpose PI (Payment Instructions) is the most central and sensitive data structure in SET. It is used to
pass the data required to authorize a payment card payment from the Cardholder to the
Payment Gateway, which will use the data to initiate a payment card transaction through the
traditional payment card financial network. The data is encrypted by the Cardholder and
sent via the Merchant, such that the data is hidden from the Merchant unless the Acquirer
passes the data back to the Merchant.

Variations There are three versions of the PI.

PIUnsigned Created by a Cardholder with no signature certificate. Used in a
PReqUnsigned message.

Data integrity is provided through the addition of a hash of the PI data
which is protected in the OAEP block. No source authentication is
provided by this mechanism.

PIDualSigned Created by a Cardholder that possesses a signature certificate. Used in a
PReqDualSigned message.

The Cardholder signature authenticates the source as well as providing
data integrity.

AuthToken Created by the Payment Gateway. The Merchant extracts the PI for later
incorporation into AuthReq .

This version is used to support split shipments and installment or
recurring payments, and is passed back from the Payment Gateway after
initial authorization to be used to request subsequent authorizations.

Table 2: PI Variations

Two parts The Payment Instructions consist of two parts:

PANData contains the payment card data and is provided stronger cryptographic
treatment.

PIData contains all other payment data, transaction data, and cryptographic
support variables.

Table 3: PI Parts

Purchase
amount

If InstallRecurData exists (that is, if the PI is for installment or recurring payments, as
discussed on page 375), PurchAmt reflects the anticipated total purchase amount agreed
upon between the Merchant and the Cardholder, rather than the amount of any one payment.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 372 as of January 2, 2000

PI (Payment Instructions), continued

PI data

PI < PIUnsigned, PIDualSigned, AuthToken >

Cardholder creates PIUnsigned or PIDualSigned .

Payment Gateway creates AuthToken to support split shipments or
installment/recurring payments.

Merchant shall retain the PI for later incorporation into AuthReq .

PIUnsigned EXH(P, PI-OILink, PANToken)

See page 382 for PANToken .

PIDualSigned {PISignature, EX L(P, PI-OILink, PANData)}

See page 381 for PANData .

AuthToken See page 378.

PI-OILink L(PIHead, OIData)

See page 373 for PIHead. See page 436 for OIData.

PISignature SO(C, PI-TBS)
PI-TBS {HPIData, HOIData}
HPIData DD(PIData)
HOIData DD(OIData)

See page 436 for OIData.

PIData {PIHead, PANData}

See page 373 for PIHead.

See page 381 for PANData .

Table 4: PI Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 373

PI (Payment Instructions), continued

PIHead data

PIHead {TransIDs, Inputs, MerchantID, [InstallRecurData],
TransStain, SWIdent, [AcqBackKeyData],
[PIExtensions]}

TransIDs See page 370.

Inputs {HOD, PurchAmt}
MerchantID Copied from Merchant signature certificate

InstallRecurData See page 377.

TransStain HMAC(XID, CardSecret)
SWIdent String identifying the software (vendor and version) initiating

the request. It is specified in the PI so the Payment Gateway
knows the software of the Cardholder.

AcqBackKeyData {AcqBackAlg, AcqBackKey}
PIExtensions The data in an extension to the payment instructions must shall

be financial and should be important for the processing of an
authorization by the Payment Gateway, the financial network,
or the Issuer.

Table 5: PIHead Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 374 as of January 2, 2000

PI (Payment Instructions), continued

PIHead data (continued)

HOD The same value as placed in OIData. See “OIData” on
page 436

PurchAmt The amount of the transaction as specified by the Cardholder

XID Copied from TransIDs ; see page 370

CardSecret See “PANData0” in Part II on page 271.

AcqBackAlg Selected from Encryption IDs in Payment Gateway certificate.

AcqBackKey Key for AcqCardMsg of an appropriate length for
AcqBackAlg

Table 5: PIHead Data, continued

PI extension
guidelines

SET Payment Gateway certificates include a private certificate extension, SETExtensions .
This certificate extension lists the object identifiers of the message extensions that the
Payment Gateway can process in payment instructions. Cardholder software can shall use
this data to ensure that no unrecognized critical extension is put into the payment instructions
(in PIExtensions or in InstallRecurData .SIRExtensions). See Part II, page 336, for
further detail.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 375

InstallRecurData

Purpose InstallRecurData allows the Cardholder to authorize installment or recurring payments.
This component of the PI (Payment Instructions) is copied into the authorization token
(AuthToken) described on page 378.

Recurring -
Frequency

RecurringFrequency indicates the minimum number of days between authorizations. A
frequency of monthly is indicated by a value of 28. The earliest possible date for each
authorization is based on the actual date of the prior authorization. For example, if
recurring Frequency is 28, the following authorization dates are acceptable:

typical authorization dates earliest possible authorization dates

1/31/99 1/31/99

2/28/99 2/28/99

3/31/99 3/28/99

4/30/99 4/25/99

5/31/99 5/23/99

6/30/99 6/20/99

Later authorizations are acceptable (until recurringExpiry).

Recurr ing -
Expiry

It is the responsibility of the Cardholder and Payment Gateway software to ensure that
recurring Expir y is not later than the card expiration date.

Note: The card needs to be valid only at the time of authorization. It is not a problem if it
expires between authorization and capture.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 376 as of January 2, 2000

InstallRecurData, continued

Create
InstallRecurData

Step Action

1 Receive as input:

installTotalTrans an integer representing the maximum number
of permitted authorizations for installment
payments (optional)

recurringFrequency an integer representing the minimum number
of days between authorizations (optional)

recurringExpiry the final date after which no further
authorizations are permitted (optional)

 Note: Either installTotalTrans will be provided or both recurringFrequency
and recurringExpiry will be provided; no other combination is valid.

2 If installTotalTrans is not provided, continue with Step 4.

 Otherwise, construct InstallRecurInd:

installTotalTrans installTotalTrans

3 Append the result of Step 2 to the tag [0] and continue with Step 7.

4 Construct Recurring:

recurringFrequency recurringFrequency

recurringExpiry recurringExpiry

5 Construct InstallRecurInd:

recurring the result of Step 4

6 Append the result of Step 5 to the tag [1].

7 Construct InstallRecurData:

installRecurInd the result of Step 3 or Step 6

irExtensions any message extension(s) required to support
additional business functions (optional)

8 Return the result of Step 7.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 377

InstallRecurData, continued

InstallRecurData

InstallRecurData {InstallRecurInd, [IRExtensions]}
InstallRecurInd < InstallTotalTrans, Recurring >
IRExtensions The data in an extension to installment or recurring data must

shall be financial and should relate to the processing of
subsequent authorizations by the Merchant and the Payment
Gateway.

Note: The installment/recurring data is not transmitted to the
Issuer.

InstallTotalTrans Cardholder specifies a maximum number of permitted
authorizations for installment payments.

Recurring {RecurringFrequency, RecurringExpiry}
RecurringFrequency The minimum number of days between authorizations (a

frequency of monthly is indicated by a value of 28).

RecurringExpiry A final date after which no further authorizations are permitted.

Table 6: InstallRecurData

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 378 as of January 2, 2000

AuthToken

Purpose AuthToken represents data required by the Payment Gateway for subsequent authorizations
of a transaction. It is provided by the Payment Gateway when authorization for part of an
order is made. As long as the transaction is incomplete, an AuthToken is returned. Once the
transaction is completed, no more AuthToken s are required or provided. The Payment
Gateway updates the AuthToken as necessary, and only the Payment Gateway can read the
data it contains.

AuthToken data

AuthToken EncX(P1, P2, AuthTokenData, PANToken)
AuthTokenData {TransIDs, PurchAmt, MerchantID, [AcqBackKeyData],

[InstallRecurData], [RecurringCount], PrevAuthDateTime,
TotalAuthAmount, AuthTokenOpaque}

PANToken

TransIDs

PurchAmt Fields copied from Cardholder-produced PIHead. See page 373.

MerchantID

AcqBackKeyData

InstallRecurData See page 377.

RecurringCount Number of recurring authorizations performed so far.

PrevAuthDateTime Date and time of Merchant’s last authorization in a sequence of
recurring authorizations.

TotalAuthAmount The total amount authorized so far by all authorizations for this
XID.

AuthTokenOpaque Opaque data defined by the generating Payment Gateway.

Table 7: AuthToken Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 379

AcqCardMsg

Purpose This field provides a mechanism for an Acquirer to send a message back to the Cardholder
without exposing it to the Merchant. It may be sent after the Payment Gateway has received
the AuthReq message from the Merchant.

AcqCardMsg
data

AcqCardMsg EncK(AcqBackKeyData, P, AcqCardCodeMsg)

AcqBackKeyData is supplied by the Cardholder in the PI. The
encrypted message is destined to the Cardholder.

AcqBackKeyData Copied from PIHead.AcqBackKeyData ; see page 373.

AcqCardCodeMsg {AcqCardCode, AcqCardMsgData}
AcqCardCode Enumerated code. See page 379.

AcqCardMsgData {[AcqCardText], [AcqCardURL], [AcqCardPhone]}
AcqCardText Textual message to be displayed to cardholder.

AcqCardURL URL referencing HTML message to be displayed to cardholder.

AcqCardPhone Phone number to be presented to the cardholder.

Table 8: AcqCardMsg Data

Notes AcqCardMsg is tunneled from the Acquirer to the Cardholder through the Merchant. The
Cardholder sends the symmetric key needed to decrypt it to the Merchant in the PI; the
Merchant passes the key to the Payment Gateway. The Merchant receives AcqCardMsg in
AuthRes and shall copy it to PRes and InqRes .

This optional field is available only if supported by the profile of a payment card brand via
the Payment Gateway’s encryption certificate (Cert-PE) .

AcqCardCode The following values are defined for AcqCardCode.

messageOfDay A message the Acquirer wishes to display to all users.

accountInfo Information about the account to be passed back to the user.

callCustomerService Prompts the application to display a message requesting that
the user call Customer Service.

Table 9: Enumerated Values for AcqCardCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 380 as of January 2, 2000

CapToken

Purpose If authorization without capture is requested, the Payment Gateway may generates a capture
token and returns it as part of AuthRes . CapToken represents data required by the
Payment Gateway for capture of the authorized transaction.

Note: CapToken is optional at the Acquirer’s discretion. It is one way to save data for
capture processing, but the data may instead be saved on the Merchant system, the Payment
Gateway system or any other Acquirer designated system.

For example, the Payment Gateway will require the account number (PAN) to process the
capture. To have the PAN available, the Payment Gateway may:

• store the PAN in the transaction record (and retain the transaction record until the
authorization expires, or until so much time has passed since the capture that the Merchant
can no longer perform a credit), or

• populate PANToken as part of CapToken in AuthRes , or

• if MerAuthFlag in the MerchantData private extension to the Merchant certificate is set to
TRUE, return PANToken (as described on page 382) in AuthRes , and extract the PAN
from the PANToken when it is returned in CapReq .

CapToken data

CapToken < Enc(P1, P2, CapTokenData),
 EncX(P1, P2, CapTokenData, PANToken),
 {} >

P1 and P2 denote Payment Gateways:

• P1 is the sender.
• P2 is the receiver.

In this version of SET, P1 and P2 are always the same Payment
Gateway.

CapTokenData {AuthRRPID, AuthAmt, TokenOpaque}
PANToken See page 382.

AuthRRPID The RRPID that appeared in the corresponding AuthReq or
AuthRevReq .

AuthAmt Actual amount authorized, which may differ from Cardholder’s
PurchAmt .

TokenOpaque Opaque data defined by the generating Payment Gateway.

Table 10: CapToken Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 381

PANData

Purpose PANData contains data that identifies the specific payment card account. The structure is
broken out so that it can conveniently be separated and encrypted under appropriately strong
encryption for sensitive data.

PANData

PANData {PAN, CardExpiry, PANSecret, EXNonce}

Always in the extra (OAEP) slot of an encapsulation operator.

PAN Primary Account Number; typically, the account number on the card.

CardExpiry Expiration date on the card.

PANSecret Secret value shared among Cardholder, Payment Gateway, and
Cardholder CA; prevents guessing attacks on PAN in the Cardholder
certificate.

EXNonce A fresh nonce to foil dictionary attacks on PANData .

Table 11: PANData

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 382 as of January 2, 2000

PANToken

Purpose PANToken , like PANData , contains data that identifies the specific payment card account.
PANToken is used when PANSecret is not needed to provide blinding of the data.

• PANToken can always be included in CapToken , as CapToken can be read only by
the Payment Gateway that created it.

• PANToken can appear in AuthRes only if MerAuthFlag in the MerchantData private
extension to the Merchant certificate is set to TRUE. If that criteria is met, sending
PANToken to the Merchant is at the discretion of the Acquirer/Payment Gateway. For
further discussion, see “CapToken” on page 380.

PANToken data

PANToken {PAN, CardExpiry, EXNonce}

Always in the extra (OAEP) slot of an encapsulation operator.

PAN Primary Account Number; typically, the account number on the card.

CardExpiry Expiration date on the card.

EXNonce A fresh nonce to foil dictionary attacks on PANToken .

Table 12: PANToken Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 383

SaleDetail

Purpose SaleDetail collects data associated with the sale represented by the payment card
transaction. It is generated as part of the settlement process between the Merchant and the
Payment Gateway. SaleDetail carries data from the Merchant necessary for the Payment
Gateway to produce a clearing request message (for payment) that can be processed by the
Acquirer or financial network for transmission to the Issuer.

SaleDetail data

SaleDetail {[BatchID], [BatchSequenceNum],
[PayRecurInd], [MerOrderNum], [AuthCharInd],
[MarketSpecSaleData], [CommercialCardData],
[OrderSummary], [CustomerReferenceNumber],
[CustomerServicePhone], OKtoPrintPhoneInd,
[SaleExtensions]}

Note: This field may appear in an AuthReq with
CaptureNow set to TRUE or in the capture-related
messages; when appearing in AuthReq , the fields
noted as originating from AuthResPayload are not
present.

BatchID Identification of the settlement batch for Merchant-
Acquirer accounting.

BatchSequenceNum The sequence number of this item within the batch.

PayRecurInd Enumerated transaction type. See page 384.

MerOrderNum Merchant order number.

AuthCharInd Copied from AuthResPayload ; see page 539.

MarketSpecSaleData {[MarketSpecDataID], [MarketSpecCapData]}
CommercialCardData Description of items for this capture; see page 385.

Typically, this information is only included for
commercial card products under special arrangement
between the merchant and the customer.

OrderSummary A summary description of the order.

CustomerReferenceNumber A reference number assigned to the order by the
Cardholder.

CustomerServicePhone The merchant’s customer service telephone number

OKtoPrintPhoneInd A Boolean value indicating if the Issuer may print the
customer service telephone number on the cardholder’s
statement.

Table 13: SaleDetail Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 384 as of January 2, 2000

SaleDetail, continued

SaleDetail data (continued)

SaleExtensions The data in an extension to the sale detail must shall be
financial and should be important for the processing of a
capture request by the Payment Gateway, the financial
network, or the Issuer.

MarketSpecDataID Copied from AuthResPayload ; see page 539.

MarketSpecCapData < MarketAutoCap, MarketHotelCap,
MarketTransportCap >

Market-specific capture data.

MarketAutoCap Automobile rental charge description. See page 387.

MarketHotelCap Hotel charge description. See page 390.

MarketTransportCap Passenger transport data. See page 392.

Table 13: SaleDetail Data, continued

PayRecurInd The following values are defined for PayRecurInd .

unknown The type of transaction is unknown.

singleTransaction The transaction consists of a single authorization and capture.

recurringTransaction The transaction consists of multiple authorizations and
captures that are repeated on a regular basis.

installmentPayment The transaction consists of multiple authorizations and
captures that are performed a fixed number of times.

otherMailOrder Any other mail order transaction.

Table 14: Enumerated Values for PayRecurInd

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 385

SaleDetail, continued

CommercialCardData

CommercialCardData {[ChargeInfo], [MerchantLocation], [ShipFrom],
[ShipTo], [ItemSeq]}

ChargeInfo {[TotalFreightShippingAmount],
[TotalDutyTariffAmount],
[DutyTariffReference],
[TotalNationalTaxAmount],
[TotalLocalTaxAmount],
[TotalOtherTaxAmount], [TotalTaxAmount],
[MerchantTaxID], [MerchantDutyTariffRef],
[CustomerDutyTariffRef],
[SummaryCommodityCode], [MerchantType]}

MerchantLocation Location ; see page 394

ShipFrom Location ; see page 394

ShipTo Location ; see page 394

ItemSeq {Item +}
1 to 999 item level detail records

TotalFreightShippingAmount The total amount added to the order for shipping and
handling.

TotalDutyTariffAmount The total amount of duties or tariff for the order.

DutyTariffReference The reference number assigned to the duties or tariff
for the order.

TotalNationalTaxAmount The total amount of national tax (sales or VAT) applied
to the order.

TotalLocalTaxAmount The total amount of local tax applied to the order.

TotalOtherTaxAmount The total amount of other taxes applied to the order.

TotalTaxAmount The total amount of taxes applied to the order.

MerchantTaxID The tax identification number of the Merchant.

MerchantDutyTariffRef The duty or tariff reference number assigned to the
merchant.

CustomerDutyTariffRef The duty or tariff reference number assigned to the
cardholder.

Table 15: CommercialCardData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 386 as of January 2, 2000

SaleDetail, continued

CommercialCardData (continued)

SummaryCommodityCode The commodity code that applies to the entire order.

MerchantType The type of merchant.

Item {Quantity, [UnitOfMeasureCode], Descriptor,
[CommodityCode], [ProductCode], [UnitCost],
[NetCost], DiscountInd, [DiscountAmount],
[NationalTaxAmount], [NationalTaxRate],
[NationalTaxType], [LocalTaxAmount],
[OtherTaxAmount], ItemTotalCost}

Quantity The quantity for the line item.

UnitOfMeasureCode The unit of measure for the line item.

Descriptor A description of the line item.

CommodityCode The commodity code for the line item.

ProductCode The product code for the line item.

UnitCost The unit cost of the line item.

NetCost The net cost per unit of the line item.

DiscountInd Indicates if a discount was applied.

DiscountAmount The amount of discount applied to the line item.

NationalTaxAmount The amount of national tax (sales or VAT) applied to
the line item.

NationalTaxRate The national tax (sales or VAT) rate applied to the line
item.

NationalTaxType The type of national tax applied to the line item.

LocalTaxAmount The amount of local tax applied to the line item.

OtherTaxAmount The amount of other taxes applied to the line item.

ItemTotalCost The total cost of the line item.

Table 15: CommercialCardData, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 387

SaleDetail, continued

MarketAutoCap
data

MarketAutoCap {[RenterName], [RentalLocation],
RentalDateTime, [AutoNoShow],
[RentalAgreementNumber], [ReferenceNumber],
[InsuranceType], [AutoRateInfo],
[ReturnLocation], ReturnDateTime,
AutoCharges}

RenterName The name of the person renting the vehicle.

RentalLocation Location ; see page 394.

RentalDateTime The date (and optionally time) the vehicle was rented.

AutoNoShow Enumerated code indicating that the customer failed to
show up to rent the vehicle as scheduled. See page 389.

RentalAgreementNumber The rental agreement number.

ReferenceNumber The rental reference number.

InsuranceType The type of insurance selected by the renter.

AutoRateInfo {AutoApplicableRate, [LateReturnHourlyRate],
[DistanceRate], [FreeDistance],
[VehicleClassCode], [CorporateID]}

ReturnLocation Location ; see page 394.

ReturnDateTime The date (and optionally time) the vehicle was returned.

AutoCharges {RegularDistanceCharges, [LateReturnCharges],
[TotalDistance], [ExtraDistanceCharges],
[InsuranceCharges], [FuelCharges],
[AutoTowingCharges],
[OneWayDropOffCharges], [TelephoneCharges],
[ViolationsCharges], [DeliveryCharges],
[ParkingCharges], [OtherCharges],
[TotalTaxAmount], [AuditAdjustment]}

AutoApplicableRate <DailyRentalRate, WeeklyRentalRate>
LateReturnHourlyRate The hourly charge for late returns.

Table 16: MarketAutoCap Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 388 as of January 2, 2000

SaleDetail, continued

MarketAutoCap data (continued)

DistanceRate The rate charged per mile in excess of any free distance
allowance.

FreeDistance The distance the vehicle can travel per day without
incurring an additional charge.

VehicleClassCode The class of vehicle rented.

CorporateID The corporate identification number that applies to the
rental rate.

RegularDistanceCharges The amount of charges for the rental (excluding extras
classified below).

LateReturnCharges The amount of charges for returning the vehicle after the
date and time due back.

TotalDistance The total distance the vehicle was driven.

ExtraDistanceCharges The amount of the charges resulting from exceeding the
free distance allowance.

InsuranceCharges The amount of charges resulting from insurance.

FuelCharges The amount of refueling charges.

AutoTowingCharges The amount of charges resulting from towing.

OneWayDropOffCharges The amount of the drop-off charges resulting from a
one-way rental.

TelephoneCharges The amount of charges resulting from the use of the
rental vehicle telephone.

ViolationsCharges The amount of charges resulting from violations assessed
during the rental period.

DeliveryCharges The amount of charges resulting from the delivery of the
rental vehicle.

ParkingCharges The amount of charges resulting from parking the rental
vehicle.

OtherCharges The amount of other charges not classified elsewhere.

TotalTaxAmount The total amount of taxes applied to the rental.

AuditAdjustment The amount the transaction was adjusted as a result of
auditing by the rental company.

DailyRentalRate The daily rental rate.

WeeklyRentalRate The weekly rental rate.

Table 16: MarketAutoCap Data, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 389

SaleDetail, continued

AutoNoShow The following values are defined for AutoNoShow .

normalVehicle The rental vehicle was not a special type

specialVehicle The rental vehicle was a special type

Table 17: Enumerated Values for AutoNoShow

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 390 as of January 2, 2000

SaleDetail, continued

MarketHotelCap
data

MarketHotelCap {ArrivalDate, [HotelNoShow], DepartureDate,
[DurationOfStay], [FolioNumber], [PropertyPhone],
[CustomerServicePhone], [ProgramCode],
[HotelRateInfo], HotelCharges}

ArrivalDate The date the cardholder checked in (or was scheduled to
check in) to the hotel.

HotelNoShow Enumerated code indicating that the customer failed to check
in to the hotel as scheduled. See page 391.

DepartureDate The date the cardholder checked out of the hotel.

DurationOfStay The number of days the cardholder stayed in the hotel.

FolioNumber The folio number.

PropertyPhone The telephone number of the hotel.

CustomerServicePhone The customer service telephone number (of the hotel or the
hotel chain).

ProgramCode A code indicating the type of special program that applies to
the stay.

HotelRateInfo {DailyRoomRate, [DailyTaxRate]}
HotelCharges {RoomCharges, [RoomTax], [PrepaidExpenses],

[FoodBeverageCharges], [RoomServiceCharges],
[MiniBarCharges], [LaundryCharges],
[TelephoneCharges], [BusinessCenterCharges],
[ParkingCharges], [MovieCharges],
[HealthClubCharges], [GiftShopPurchases],
[FolioCashAdvances], [OtherCharges],
[TotalTaxAmount], [AuditAdjustment]}

DailyRoomRate The daily room rate. This value includes applicable taxes
unless the DailyTaxRate is specified.

DailyTaxRate The amount of taxes applied to the daily room rate.

Table 18: MarketHotelCap Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 391

SaleDetail, continued

MarketHotelCap data (continued)

RoomCharges The total amount charged for the room (excluding extras
classified below).

RoomTax The amount of tax applied to the RoomCharges .

PrepaidExpenses The total amount of pre-paid expenses.

FoodBeverageCharges The total amount of food and beverage charges.

RoomServiceCharges The total amount of room service charges.

MiniBarCharges The total amount of mini bar charges.

LaundryCharges The total amount of laundry charges.

TelephoneCharges The total amount of telephone charges.

BusinessCenterCharges The total amount of business center charges.

ParkingCharges The total amount of parking charges.

MovieCharges The total amount of in-room movie charges.

HealthClubCharges The total amount of health club charges.

GiftShopPurchases The total amount of gift shop purchase charges.

FolioCashAdvances The total amount of cash advances applied to the room.

OtherCharges The total amount of other charges (not classified above).

TotalTaxAmount The total amount of taxes applied to the bill.

Audit Adjustment The amount the transaction was adjusted as a result of
auditing by the hotel.

Table 18: MarketHotelCap Data, continued

HotelNoShow The following values are defined for HotelNoShow .

guaranteedLateArrival Indicates the reservation was made with guaranteed late
arrival

Table 19: Enumerated Values for HotelNoShow

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 392 as of January 2, 2000

SaleDetail, continued

MarketTransportCap
data

MarketTransportCap {PassengerName, DepartureDate, OrigCityAirport,
[TripLegSeq], [TicketNumber], [TravelAgencyCode],
[TravelAgencyName], [Restrictions]}

PassengerName The name of the passenger to whom the tickets were issued.

DepartureDate The departure date.

OrigCityAirport The city of origin for the trip.

TripLegSeq {TripLeg +}
1 to 16 TripLeg records.

TicketNumber The ticket number.

TravelAgencyCode The travel agency code.

TravelAgencyName The travel agency name.

Restrictions Enumerated code indicating restrictions on refunds or changes.
See page 393.

TripLeg {DateOfTravel, CarrierCode, ServiceClass,
StopOverCode, DestCityAirport, [FareBasisCode],
[DepartureTax]}

DateOfTravel The date of travel for this trip leg.

CarrierCode The carrier code for this trip leg.

ServiceClass The class of service for this trip leg.

StopOverCode Enumerated code indicating whether stopovers are permitted for
this trip leg. See page 393.

DestCityAirport The destination city for this trip leg.

FareBasisCode The fare basis code for this trip leg.

DepartureTax The departure tax for this trip leg.

Table 20: MarketTransportCap Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 393

SaleDetail, continued

Restrictions The following values are defined for Restrictions .

unspecifiedRestrictions Unspecified restrictions

Table 21: Enumerated Values for Restrictions

StopOverCode The following values are defined for StopOverCode .

noStopOverPermitted No stop over permitted on this trip

stopOverPermitted Stop over was allowed on this trip

Table 22: Enumerated Values for StopOverCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 394 as of January 2, 2000

Location

Location data Location is used repeatedly in SaleDetail , as well as in AuthReqPayload .

Location {CountryCode, [City], [StateProvince], [PostalCode],
[LocationID]}

CountryCode The ISO 3166 country code for the location.

City The city name of the location.

StateProvince The name or abbreviation of the state or province.

PostalCode The postal code of the location.

LocationID An identifier that the merchant uses to specify one of its locations.

Table 23: Location Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 395

RRTags

Purpose RRTags carries message identification data; in particular, RRPID serves as the statistically
unique identifier for a message pair.

RRTags data

RRTags {RRPID, MerTermIDs, Date}
RRPID Fresh request/response pair ID.

MerTermIDs {MerchantID, [TerminalID], [AgentNum], [ChainNum],
[StoreNum]}

Date Current date for aging logs.

MerchantID Cardholder inserts this data in PIHead. It is copied from MerID in the
Merchant signature certificate.

TerminalID Merchant inserts this data in AuthReq .

AgentNum Merchant inserts this data in AuthReq .
ChainNum Merchant inserts this data in AuthReq .
StoreNum Merchant inserts this data in AuthReq .

Table 24: RRTags Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 396 as of January 2, 2000

BatchStatus

Purpose To send the status of a batch from a Payment Gateway to a Merchant or vice versa.

BatchStatus
data

Note: The terms “debit” and “credit” reflect the impact of the transactions on the Merchant’s
account.

BatchStatus {OpenDateTime, [ClosedWhen], BatchDetails,
[BatchExtensions]}

OpenDateTime The date and time the batch was opened.

ClosedWhen {CloseStatus, CloseDateTime}
BatchDetails {BatchTotals, [BrandBatchDetailsSeq]}
BatchExtensions The data in an extension to the batch administration

message must shall be financial and should be important
for the processing of the batch administration request.

CloseStatus Enumerated code indicating status of batch close. See
page 397.

CloseDateTime The date and time the batch was closed.

BatchTotals {TransactionCountCredit,
TransactionTotalAmtCredit,
TransactionCountDebit,
TransactionTotalAmtDebit,
[BatchTotalExtensions]}

BrandBatchDetailsSeq {BrandBatchDetails +}
TransactionCountCredit The number of transactions that resulted in a credit to the

merchant's account.

TransactionTotalAmtCredit The total amount credited to the merchant's account.

TransactionCountDebit The number of transactions that resulted in a debit to the
merchant's account.

TransactionTotalAmtDebit The total amount debited from the merchant's account.

Table 25: BatchStatus Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 397

BatchStatus, continued

BatchStatus data (continued)

BatchTotalExtensions The data in an extension to the batch administration
message must shall be financial and should be important
for the processing of the batch administration request.

Note: Information regarding the processing of the
request itself should appear in an extension to
BatchAdminResData ; information regarding the
status of a batch should appear in an extension to
BatchStatus ; information regarding detail for an item
within the capture batch should appear in an extension to
TransactionDetail .

BrandBatchDetails {BrandID, BatchTotals}
BrandID Payment card brand (without product type).

Table 25: BatchStatus Data, continued

CloseStatus The following values are defined for CloseStatus .

closedByMerchant The batch was closed by the Merchant

closedByAcquirer The batch was closed by the Acquirer

Table 26: Enumerated Values for CloseStatus

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 398 as of January 2, 2000

TransactionDetail

Purpose To send details of the transactions in a batch from a Payment Gateway to a Merchant or vice
versa.

Transaction-
Detail data

There is one TransactionDetail record for each CapReq or CredReq item that has not
been subsequently reversed, and one for each CapRevReq or CredRevReq item which
reverses a message that has already been processed. That is, if the batch that contains a given
CapReq or CredReq item is still open when the Merchant decides to reverse that message,
the item is deleted from the batch (the TransactionDetail is discarded). However, if the
batch is closed, the reversal is placed in a new batch and a TransactionDetail record is
created for it.

TransactionDetail {TransIDs, AuthRRPID, BrandID, BatchSequenceNum,
[ReimbursementID], TransactionAmt,
TransactionAmtType, [TransactionStatus],
[TransExtensions]}

TransIDs The transaction identifiers from the authorization/capture
processing of the item. See page 370.

AuthRRPID The RRPID that appeared in the corresponding AuthReq or
AuthRevReq .

BrandID Payment card brand (without product type).

BatchSequenceNum The sequence number of this item within the batch.

ReimbursementID Enumerated code indicating the type of reimbursement for the
item. See page 399.

TransactionAmt The amount for item of the type indicated by
TransactionAmtType . The amount is always specified as a
positive value.

TransactionAmtType Enumerated code indicating the type of amount (credit or debit)

TransactionStatus Enumerated code indicating the result of passing the transaction
to the next upstream first non-SET system. See page 399.

TransExtensions The data in an extension to the batch administration message
must shall be financial and should be important for the
processing of the batch administration request.

Note: Information regarding the processing of the request itself
should appear in an extension to BatchAdminResData ;
information regarding the status of a batch should appear in an
extension to BatchStatus ; information regarding detail for an
item within the capture batch should appear in an extension to
TransactionDetail .

Table 27: TransactionDetail Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 399

TransactionDetail, continued

ReimbursementID The following values are defined for ReimbursementID .

unspecified Unknown or does not appear elsewhere in
this list.

standard Standard interchange rate.

keyEntered Interchange rate for key-entered
transactions.

electronic Interchange rate for electronic transactions.

additionalData Interchange rate for transactions that
include additional clearing data.

enhancedData Interchange rate for transactions that
include data enhancements (such as
additional authorization-related data).

marketSpecific Interchange rate for transactions within a
specific market segment (such as Passenger
Transport).

Table 28: Enumerated Values for ReimbursementID

TransactionStatus The following values are defined for TransactionStatus .

success The transaction was successfully passed to
the first non-SET processing system.

unspecifiedFailure The transaction failed to pass to the first
non-SET processing system.

Table 29: Enumerated Values for TransactionStatus

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 400 as of January 2, 2000

Section 2
General Flow

Payment Flow

Request /
response
message pairs

The main flow for SET payment processing involves paired request/response messages
between Cardholder and Merchant, and between Merchant and Payment Gateway. Each pair
of messages supports a step in the payment process. There is a basic set of required pairs, and
additional optional pairs.

Purchase The PReq/PRes message provide the basic purchase process between the Cardholder and
the Merchant. The PRes message may be returned immediately as in Figure 1 on page 401,
or at any time later in the protocol. The data returned will depend on the stage of the protocol
at which the PRes is returned.

Authorization Authorization is performed by means of the AuthReq /AuthRes messages exchanged
between the Merchant and the Payment Gateway. Authorization provides the Merchant
approval by the Issuer to continue processing.

Capture
messages

Capture may be accomplished with the CapReq/CapRes message pair exchanged between
the Merchant and the Payment Gateway. This activity completes the purchase for the
Payment Gateway, and results in the actual charge against the cardholder’s account.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 401

Payment Flow, continued

Protocol
summary

Figure 1 below shows a typical example of a payment protocol flow. Optional messages are
written in italics.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 PInitReq

 PInitRes

 PReq

 AuthReq

 AuthRes

 PRes

 CapReq

 CapRes

Figure 1: Payment Protocol Flow

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 402 as of January 2, 2000

Payment Flow, continued

Payment flow
options

Figure 2 (which continues on the next page) shows a more elaborate example of the messages
which may occur in processing a transaction. Optional messages are shown in italics. Each
message is described in the following sections: Cardholder/Merchant messages on page 404
and Merchant/Payment Gateway messages beginning on page 464.

In addition to the messages shown, certain messages may be reversed:

this message: may be reversed by sending this
message:

to which the
response is:

AuthReq partially or completely AuthRevReq AuthRevRes

CapReq completely CapRevReq CapRevRes

CredReq completely CredRevReq CredRevRes

Note: Other orderings of the messages are also allowed.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 PInitReq

 PInitRes

 PReq

 PRes

 AuthReq

 AuthRes

 InqReq

 InqRes

Figure 2: Payment Flow Options

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 403

Payment Flow, continued

Payment flow options (continued)

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 CapReq

 CapRes

 InqReq

 InqRes

 CredReq

 CredRes

 InqReq

 InqRes

 Error
(may occur in response to any message)

 Error
(may occur in response to any message)

Figure 2: Payment Flow Options (continued)

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 404 as of January 2, 2000

Chapter 2
Cardholder/Merchant Messages

Overview

Introduction Chapter 2 describes messages exchanged between the Cardholder and Merchant.

Organization The following sections are included:

Section Title Contents Page

1 Payment Initialization
Request/Response Processing

Presents the PInitReq and PInitRes
messages, which support initialization
of the protocol, including selection of
the payment card and exchange of
certificates.

405

2 Purchase Request/Response
Processing

Presents the PReq and PRes
messages, which encompass the
purchase transaction between the
Cardholder and Merchant.

422

3 Inquiry Request/Response
Processing

Presents the InqReq and InqRes
messages, enabling the Cardholder to
query the Merchant regarding the
status of the transaction.

456

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 405

Section 1
Payment Initialization Request/Response Processing

Overview

Introduction The payment initialization processing consists of two messages, a request from a Cardholder
to Merchant and a response from the Merchant to the Cardholder.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 PInitReq

 PInitRes

Figure 3: PInitReq /PInitRes Message Pair

Purpose The purpose of this message pair is to obtain certificates and CRLs for the Cardholder. In the
absence of this message pair, this data must be obtained through some other means (such as a
CD-ROM). These messages are usually preceded by a shopping phase and a SET Initiation
Process.

The request message, PInitReq :

• identifies the Cardholder’s preferred language,

• provides enough data about the cardholder’s selection of a payment card to enable the
Merchant software to select an appropriate Payment Gateway certificate,

• provides a local Cardholder-defined identifier for the transaction,

• sends a challenge variable to ensure freshness of the response message, and

• may includes Thumbprints of relevant certificates and CRLs already held by the
Cardholder (so that the Merchant need not re-send those certificates and CRLs).

The response message, PInitRes :

• contains needed certificates and CRLs (in the signature), as well as the
BrandCRLIdentifier ;

• establishes a Merchant date and an XID; and

• returns the Cardholder’s challenge and Thumbprints, adding a challenge generated by the
Merchant.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 406 as of January 2, 2000

Overview, continued

Variations These messages may be omitted in non-interactive environments, with the data in these
messages provided by off-line mechanisms (such as CD-ROM) and the challenges omitted;
there is therefore less guarantee of message freshness.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 407

Cardholder Prepares for PInitReq

Transition from
shopping

At the conclusion of shopping, the cardholder will indicate readiness to begin payment. As
part of the transition, an initiation process will take place:

• For off-line transactions, such as shopping from a CD-ROM, the transition will be defined
by the application.

• For on-line transactions, such as shopping via the World Wide Web, the most common
transition uses the process described in the SET External Interface Guide. (See “Related
documentation” in the Preface.)

Order record For the purposes of this documentation, a logical record is defined containing data from the
shopping phase that applies to the payment phase. The actual implementation of collecting
and passing this data is at the discretion of the application developer.

OrderRecord { od, purchAmt, [avsData], [marketData], [installRecur Data] ,
brandIDs, [lid-M] , [ext] , [extOIDs] }

od The order description, which contains text that is displayable to the
user. If supported by both the merchant and the cardholder
applications, other formats (such as HTML) may be used to include
formatting information. A method of using other formats is described
in the SET External Interface Guide. (See “ Related documentation” in
the Preface.)

purchAmt The amount of the transaction.

avsData Cardholder billing address. See page 507.

marketData Market-specific authorization data. See MarketSpecAuthData on
page 507.

installRecurData Data about installment or recurring payments. See page 375.

brandIDs A list of brand identifiers indicating the type of payment cards
accepted by the merchant

lid-M A unique local identifier assigned by the merchant (optional)

ext Any message extension(s) required to support additional business
functions, and associated with od

extOIDs The object identifiers that identify ext

Table 30: OrderRecord Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 408 as of January 2, 2000

Cardholder Prepares for PInitReq, continued

Prepar e for
payment
initialization

The Cardholder application requires certain data to begin processing. The following
processing sequence provide one method to obtain that data.

Step Action

1 Receive as input (from the initiation process or an application-defined interface):

order an instance of OrderRecord (see page 407)

2 If order. od is the same as for a recently completed PReq, display a message to
the user warning that this appears to be a duplicate order and asking for
confirmation to continue. If the user does not confirm, abort processing.

3 Display order. od to the user and provide a mechanism for the user to accept the
description. If the user does not accept the description, abort processing.

4 Allow the user to select a payment card. The selection should be limited to those
cards whose brand identifier appears in order. brandIDs .

Note: If the user enters an account number from the keyboard, the application
must also obtain the expiration date; the application shall store the account
number and expiration date in secure data storage.

5 If order .installRecurData .recurring is not present, continue with Step 6.

Otherwise, validate the following contents of order .installRecurData :

recurringExpiry less than the expiration date of the payment card
selected in Step 4

If errors occur during validation, advise the user that the selected payment card
will expire before the final recurring payment can be authorized and give the use
the option to select another card. If the user decides to select another card,
continue with Step 4.

6 Allow the user to select a language to be used for the transaction.

Note: The choice may be determined automatically based on the user’s profile.

7 Invoke “Create PInitReq ” on page 409 with the following input:

order order

pan the result of Step 4

brandID the BrandID corresponding to the result of Step 4

language the result of Step 6

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 409

Cardholder Generates PInitReq

Create PInitReq

Step Action

1 Receive as input:

order an instance of OrderRecord (see page 407)

pan an instance of PAN

brandID an instance of BrandID

language an instance of Language

2 Recommended: Invoke “Create set of Thumbprints for request” on page 118 with
the following input:

brand brandID without Product

3 Construct PInitReq:

rrpid a statistically unique RRPID

language language

lid-C a unique local identifier (may be assigned
sequentially or randomly, but should not be repeated
frequently)

lid-M order .lid-M (if present)

chall-C a fresh random challenge

brandID brandID

bin the first six digits of pan

thumbs the result of Step 2

piRqExtensions any message extension(s) required to support
additional business functions (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 410 as of January 2, 2000

Cardholder Generates PInitReq, continued

Create PInitReq (continued)

Step Action

4 Store in the message database:

PInitReq the result of Step 3

5 Store in the transaction database:

brandID brandID

chall-C PInitReq.chall-C

language language

lid-C PInitReq.lid-C

lid-M order .lid-M (if present)

order order

panRef a reference (such as a database retrieval key) to pan
and its related data in secure data storage

6 Invoke “Send Message” on page 109 with the following input:

recip the Merchant

msg the result of Step 3

ext any message extension(s) required to support
additional business functions (optional)

rrpid PInitReq.rrpid

lid-C PInitReq.lid-C

lid-M order .lid-M (if present)

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 411

Cardholder Generates PInitReq, continued

PInitReq data

PInitReq {RRPID, Language, LID-C, [LID-M], Chall-C, BrandID, BIN,
[Thumbs], [PIRqExtensions]}

RRPID Request/response pair ID.

Language Cardholder’s natural language.

LID-C Local ID; convenience label generated by and for the Cardholder
system.

LID-M Copied from SET initiation messages (if present) described in the
External Interface Guide.

Chall-C Cardholder’s challenge to Merchant’s signature freshness.

BrandID Cardholder’s chosen payment card brand.

BIN Bank Identification Number from the cardholder’s account number
(first six digits).

Thumbs Lists of Certificate, CRL, and BrandCRLIdentifier Thumbprints in
Cardholder’s cache.

PIRqExtensions Note: The purchase initialization request is not encrypted, so this
extension shall not contain confidential information.

Table 31: PInitReq Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 412 as of January 2, 2000

Merchant Processes PInitReq

Process
PInitReq

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of PInitReq

ext any message extension(s) required to support additional
business functions (optional)

2 Validate the following contents of msg :

rrpid hdr .rrpid

lid-C hdr. messageIDs. lid-C

lid-M hdr .messageIDs. lid-M (if present)

If errors occur during validation, invoke “Create Error Message” on page 135 with
the following input:

errorCode wrapperMsgMismatch

3 Retrieve the order record (see page 407) from the shopping and initiation phases:

• If msg .lid-M is present, retrieve the order record based on msg .lid-M . If the
record is found, designate it as order ; otherwise invoke “Create Error Message”
on page 135 with the following input:

errorCode unknownLID

• If msg .lid-M is not present, retrieve the order record based on criteria outside
the scope of SET. If the record is found, designate it as order ; otherwise invoke
“Create Error Message” on page 135 with the following input:

errorCode missingData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 413

Merchant Processes PInitReq, continued

Process PInitReq (continued)

Step Action

4 From the trusted cache, retrieve the certificate:

• whose keyUsage includes keyEncipherment,

• whose subject.organizationName matches msg .brandID (as indicated by the
result of “Compare BrandID s” on page 119), and

• which identifies the Payment Gateway to receive the transaction. (See first note
below.)

If found, designate the certificate as cert-PE and its Thumbprint as pe-Thumb .

Otherwise, stop processing and display a message to the operator indicating that
corrective action must be taken to obtain a current copy of the Payment Gateway
certificate.

Notes:

• A Merchant may have multiple Acquirers for a single brand and/or multiple
BINs with an Acquirer. It is the Merchant’s responsibility to establish the criteria
to select the appropriate Payment Gateway certificate. Typically this will be a
combination of the BrandID , Merchant BIN (which may be selected based on
Cardholder BIN), and promotional card name (which, if required, must be
carried in a message extension).

• Under normal circumstances the certificate is retrieved every 24 hours using
PCertReq and will be available in the trusted cache.

5 Retrieve the BrandCRLIdentifier for the brand identified by msg .brandID
(without Product) and designate it as bci ; retrieve its Thumbprint and designate it
as bciThumb .

If req.mThumbs is present and includes bci Thumb , set bci to NULL.

6 Store in the message database:

PInitReq msg

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 414 as of January 2, 2000

Merchant Processes PInitReq, continued

Process PInitReq (continued)

Step Action

7 Construct TransIDs:

lid-C msg .lid-C

lid-M msg .lid-M (if present) or a unique local identifier
(optional)

xID a unique transaction identifier

language msg .language

8 Store in the transaction database:

bin msg .bin

brand msg .brandID without Product

brandID msg .brandID

order order

pBIN cert-PE .subject.commonName.BIN

pInit TRUE

pInitThumbs msg .thumbs

transIDs the result of Step 7

 Designate the resulting transaction record as trans .

9 Invoke “Create PInitRes ” on page 415 with the following input:

req msg

trans trans

cert-PE cert-PE

peThumb peThumb

bci bci

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 415

Merchant Generates PInitRes

Create PInitRes

Step Action

1 Receive as input:

req an instance of PInitReq

trans the transaction record

cert-PE an instance of Certificate

peThumb an instance of CertThumb

bci an instance of BrandCRLIdentifier

2 Copy trans .transIDs to an instance of TransIDs and update the following
components:

pReqDate the current date and time

3 Construct PInitResData:

transIDs the result of Step 2

rrpid req.rrpid

chall-C req.chall-C

chall-M a fresh random challenge

brandCRLIdentifier bci

peThumb peThumb

thumbs req. thumbs

piRsExtensions any message extension(s) required to support
additional business functions (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 416 as of January 2, 2000

Merchant Generates PInitRes, continued

Create PInitRes (continued)

Step Action

4 Invoke “Compose SignedData (S)” on page 150 with the following input:

s the Merchant’s signature certificate

t the result of Step 3

type id-set-content-PInitResData

certs cert-PE

5 Store in the message database:

PInitResData the result of Step 3

6 Store in the transaction database:

pReqDate TransIDs.pReqDate

7 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder

msg the result of Step 4

ext any message extension(s) required to support
additional business functions (optional)

rrpid req. rrpid

lid-C trans .transIDs. lid-C

lid-M trans .transIDs. lid-M (if present)

xID trans .transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 417

Merchant Generates PInitRes, continued

PInitRes data

PInitRes S(M, PInitResData)
PInitResData {TransIDs, RRPID, Chall-C, Chall-M, [BrandCRLIdentifier],

PEThumb, [Thumbs], [PIRsExtensions]}
TransIDs See page 370.

RRPID Request/response pair ID.

Chall-C Copied from PInitReq .

Chall-M Merchant’s challenge to Cardholder’s signature freshness.

BrandCRLIdentifier List of current CRLs for all CAs under a Brand CA. See page 348
in Part II.

PEThumb Thumbprint of Payment Gateway key-exchange certificate.

Thumbs Copied from PInitReq .

PIRsExtensions Note: The purchase initialization response is not encrypted, so this
extension shall not contain confidential information.

Table 32: PInitRes Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 418 as of January 2, 2000

Cardholder Processes PInitRes

Process
PInitRes

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of SignedData

ext any message extension(s) required to support
additional business functions (optional)

2 Invoke “Verify SignedData (S)” on page 153 with the following input:

d msg

type id-set-content-PInitResData

Designate the value of t returned as res .

3 Validate the following contents of res :

rrpid hdr. rrpid

transIDs.lid-C hdr. messageIDs. lid-C

transIDs.lid-M hdr .messageIDs. lid-M (if present)

transIDs.xID hdr .messageIDs. xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

4 From the message database, retrieve the instance of PInitReq whose LID-C
matches res.transIDs.lid-C .

• If found, designate it as req .

• Otherwise, invoke “Create Error Message” on page 135 with the following
input:

errorCode unknownLID

5 Retrieve the transaction record based on res.transIDs.lid-C and designate it as
trans . If not found, invoke “Create Error Message” on page 135 with the
following input:

errorCode unknownLID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 419

Cardholder Processes PInitRes, continued

Process PInitRes (continued)

Step Action

6 Validate the following contents of res :

transIDs.lid-M req.lid-M (if present)

rrpid req. rrpid

chall-C req.chall-C

thumbs req. thumbs

If req. lid -M was not included and res.transIDs.lid-M is present, invoke “Create
Error Message” on page with the following input: errorCode unknownLID If
errors occur during validation, invoke “Create Error Message” on page 135 with
the following input based on the field that failed:

errorCode lid-M unknownLID

rrpid unknownRRPID

chall-C challengeMismatch

thumbs thumbsMismatch

7 From the trusted cache, retrieve the certificate whose:

• keyUsage includes digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer

• serialNumber matches
msg .signerInfos[1].issuerAndSerialNumber.serialNumber .

Designate it as cert-MS .

8 If the user’s configuration indicates that the merchant identity should be
confirmed:

• Select an instance of cert-MS .merchantData.merNameSeq where the
language field matches trans .language (or if there is no matching language,
the first entry).

• Display the corresponding name field to the user.

• If the user does not accept the displayed identity, stop processing PInitRes .

9 From the trusted cache, retrieve the certificate:

• whose keyUsage includes keyEncipherment and

• whose Thumbprint matches res .peThumb .

If found, designate it as cert-PE and continue with Step 12.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 420 as of January 2, 2000

Cardholder Processes PInitRes, continued

Process PInitRes (continued)

Step Action

10 From the untrusted cache, retrieve the certificate:

• whose keyUsage includes keyEncipherment and

• whose Thumbprint matches res .peThumb .

If found, designate it as cert-PE and continue with Step 11.

Otherwise, invoke “Create Error Message” on page 135 with the following input:

errorCode missingCertificateCRLorBCI

11 Invoke “Verify certificate” on page 129 with the following input:

cert cert-PE

12 Compare the following values:

cert -MS.subject.
organizationalUnitName

cert-PE .subject.
organizationalUnitName

cert -MS.MerchantData.
merAcquirerBIN

cert-PE .subject.
commonName.BIN

If the values do not match, inform the user and stop processing PInitRes .

13 Invoke “Compare BrandID s” on page 119 with the following input:

hier FALSE

brand1 trans .brandID

brand2 cert-MS .subject.organizationName

If errors occur during validation, inform the user and stop processing PInitRes .

14 Invoke “Compare BrandID s” on page 119 with the following input:

hier FALSE

brand1 trans .brandID

brand2 cert-PE .subject.organizationName

If errors occur during validation, inform the user and stop processing PInitRes .

15 If the cardholder has a certificate for the account identified by trans .panRef ,
continue with Step 16.

Otherwise, if cert-PE .cardCertRequired is TRUE, inform the user that the
transaction cannot proceed without a cardholder certificate and stop processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 421

Cardholder Processes PInitRes, continued

Process PInitRes (continued)

Step Action

16 Store in the message database:

PInitResData res

17 Store in the transaction database:

chall-M res.chall-M

lid-M res.transIDs.lid-M (if present)

pReqDate res. transIDs.pReqDate

xID res. transIDs.xID

 Designate the resulting transaction record as trans .

18 Delete from the message database the instance of PInitReq whose rrpid
corresponds to res.rrpid .

19 Invoke “Create PReq” on page 426 with the following input:

trans trans

merID cert-MS .merchantData.merID

cert-PE cert-PE

initRes res

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 422 as of January 2, 2000

Section 2
Purchase Request/Response Processing

Overview

Introduction The purchase request/response processing consists of two messages, a request from a
Cardholder to a Merchant and a response from the Merchant to the Cardholder.

These messages are at the heart of the payment protocol: This message pair embodies the
payment from the Cardholder’s point of view.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 PReq

 PRes

Figure 4: PReq/PRes Message Pair

Structure of
PReq

PReq is the most complex message in the protocol. It consists of two parts:

• Order Instructions (OI) for the Merchant, and

• Payment Instructions (PI) tunneled through the Merchant to the Payment Gateway.

These two items are, conceptually, separately signed. The separate signatures are combined
in a provably secure optimization: a dual signature.

The Merchant is assumed to get the Order Description (OD) and PurchAmt out of band.
The salted hash of OD and PurchAmt , that is, HODInput , is included in the PI. The
Payment Gateway verifies that the hash tunneled through the Merchant by the Cardholder is
the same as the hash provided by the Merchant in AuthReq .

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 423

Overview, continued

PInitReq
optional

PReq may or may not be preceded by a PInitReq /PInitRes message pair.

PReq variations Some Cardholders will not have certificates. Messages created by such Cardholders are not
signed; instead the PIHead is linked to OIData. Integrity of such messages is provided
guaranteed by:

• OAEP used with the PI;

• H(PIHead) in OAEP block (along with PANData);

• H(OIData) with PIHead; and

• comparison by Payment Gateway of H(OIData) as supplied by the Merchant with
H(OIData) with PIHead.

If a Cardholder certificate is available, a dual signature is used to provide integrity and
authentication for the two parts of PReq.

PRes variations PRes may be returned before authorization and capture. The Merchant-Payment Gateway
processing performed affects the contents of the message.

PurchAmt Messages sent to the Cardholder are not encrypted. In order to avoid sending amounts in the
clear, amounts in later messages are transmitted as a percentage of PurchAmt , the purchase
amount included in the PReq.

For example, in PRes the amount authorized is conveyed by means of AuthRatio :

• If the full purchase amount is authorized, AuthRatio is 1.

• If an item is back-ordered and a lesser amount is therefore authorized, AuthRatio is less
than 1.

• Under certain circumstances that vary according to brand policy, AuthRatio might be
more than 1.

In each case, the Cardholder application multiplies the stored PurchAmt by AuthRatio to
determine the amount authorized, so that it can be displayed to the Cardholder.

Capture and credit amounts are conveyed similarly, by means of CapRatio and
CreditRatio .

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 424 as of January 2, 2000

Cardholder Prepares for PReq

Prepar e for
payment

If the PInitReq /PInitRes message pair has not been processed, the Cardholder application
requires certain data to begin processing the PReq. The following processing sequence
provide one method to obtain that data.

Step Action

1 Receive as input (from an application-defined interface):

order an instance of OrderRecord (see page 407)

merID an instance of MerchantID

cert-PE the Payment Gateway’s encryption certificate

Note: cert-PE must be validated prior to invocation of these processing sequence.
If it is not available or cannot be validated, the PInitReq /PInitRes message pair
must be exchanged.

2 If order. od is the same as for a recently completed PReq, display a message to
the user warning that this appears to be a duplicate order and asking for
confirmation to continue. If the user does not confirm, abort processing.

3 Display order. od to the user and provide a mechanism for the user to accept the
description. If the user does not accept the description, abort processing.

4 Allow the user to select a payment card. The selection should be limited to those
cards whose brand identifier appears in order. brandIDs .

Note: If the user enters an account number from the keyboard, the application
must also obtain the expiration date; the application shall store the account
number and expiration date in secure data storage.

5 If order .installRecurData .recurring is not present, continue with Step 6.

Otherwise, validate the following contents of order .installRecurData :

recurringExpiry less than the expiration date of the payment card
selected in Step 4

If errors occur during validation:

• Advise the user that the selected payment card will expire before the final
recurring payment can be authorized.

• Prompt the user to select another payment card.

• Continue with Step 4.

6 If the user has a certificate for the payment card selected in Step 4, continue with
Step 7.

Otherwise, if cert-PE .cardCertRequired is TRUE, inform the user that the
transaction cannot proceed without a cardholder certificate and stop processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 425

Cardholder Prepares for PReq, continued

Prepare for payment (continued)

Step Action

7 Allow the user to select a language to be used for the transaction.

Note: The choice may be determined automatically based on the user’s profile.

8 Store in the transaction database:

brandID the BrandID corresponding to the result of Step 4

chall-C chall-C from PInitRes a fresh random challenge

language the result of Step 7

lid-C a unique local identifier

order order

panRef a reference (such as a database retrieval key) to the
result of Step 4 and its related data in secure data
storage

pReqDate the current date and time

xID a unique transaction identifier

 Designate the resulting transaction record as trans .

 Note: lid-M will not appear in the transaction database if the PInitReq /PInitRes
message pair has not been processed.

9 Invoke “Create PReq” with the following input:

trans trans

merID merID

cert-PE cert-PE

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 426 as of January 2, 2000

Cardholder Generates PReq

Create PReq

Step Action

1 Receive as input:

trans the transaction record

merID an instance of MerchantID

cert-PE an instance of Certificate

initRes an instance of PInitResData (optional)

2 Construct TransIDs:

lid-C trans .lid-C

lid-M trans .lid-M (if present)

xID trans .xID

pReqDate trans .pReqDate

language trans .language

3 Construct HODInput:

od trans. order.od

purchAmt trans. order.purchAmt

odSalt a fresh salt

installRecurData trans. order .installRecurData (if present)

odExtensions trans. order .ext (if present)

4 Invoke “Compose DetachedDigest” on page 143 with the following input:

t the result of Step 3

type id-set-content-HODInput

5 Construct Inputs:

hod the result of Step 4

purchAmt trans .order.purchAmt

6 Invoke “Keyed-Hash” on page 142 with the following input:

t trans .xID

k CardSecret (if present) from the record in secure
data storage identified by trans. panRef ;
otherwise, zero

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 427

Cardholder Generates PReq, continued

Create PReq (continued)

Step Action

7 Select a supported algorithm from cert-PE .tunneling . If found, construct
AcqBackKeyData:

acqBackAlg the object identifier for the selected algorithm

acqBackKey a fresh key appropriate to the selected algorithm

8 Construct PIHead:

transIDs the result of Step 2

inputs the result of Step 5

merchantID merID

installRecurData trans .order.installRecurData (if present)

transStain the result of Step 6

swIdent vendor software identification (the same value used
in “Send Message”; see page 109)

acqBackKeyData the result of Step 7

piExtensions any message extension(s) required to support
additional business functions (optional)

9 Construct OIData:

transIDs the result of Step 2

rrpid a fresh statistically unique RRPID

chall-C trans .chall-C

hod the result of Step 4

odSalt HODInput.odSalt (from Step 3)

chall-M initRes .chall-M if initRes is present;
otherwise omit

brandID trans .brandID (omit if PInitReq/PInitRes
messages were exchanged)

bin the first six digits of the PAN from the record in
secure data storage identified by trans. panRef

odExtOIDs trans .order.extOIDs

oiExtensions any message extension(s) required to support
additional business functions (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 428 as of January 2, 2000

Cardholder Generates PReq, continued

Create PReq (continued)

Step Action

10 Invoke “Compose Linkage” on page 146 with the following input:

t1 the result of Step 8

t2 the result of Step 9

type id-set-content-OIData

11 Store in the message database:

PIHead the result of Step 8

OIData the result of Step 9

12 Store in the transaction database:

acqBackKeyData the result of Step 7

pReqRRPID oiData.rrpid

Designate the resulting transaction record as trans .

13 If the Cardholder has a certificate for the selected payment card, invoke “Create
PReqDualSigned ” on page 429 with the following input:

trans trans

cert-PE cert-PE

piHead the result of Step 8

oiData the result of Step 9

pi-oiLink the result of Step 10

Otherwise, invoke “Create PReqUnsigned ” on page 432 with the same input.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 429

Cardholder Generates PReq, continued

Create
PReqDualSigned

Step Action

1 Receive as input:

trans the transaction record

cert-PE an instance of Certificate

piHead an instance of PIHead

oiData an instance of OIData

pi-oiLink a linkage

2 Construct PANData from the record in secure data storage identified by
trans. panRef :

pan PAN

cardExpiry expiration date

panSecret PANSecret

3 Invoke “Compose EXL” on page 176 with the following input:

r cert-PE

t pi-oiLink

p the result of Step 2

type-t id-set-content-PIDualSignedTBE

type-p id-set-content-PANData

4 Construct PIData:

piHead piHead

panData p (updated in Step 3)

5 Invoke “Compose DetachedDigest” on page 143 with the following input:

t the result of Step 4

type id-set-content-PIData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 430 as of January 2, 2000

Cardholder Generates PReq, continued

Create PReqDualSigned (continued)

Step Action

6 Invoke “Compose DetachedDigest” on page 143 with the following input:

t oiData

type id-set-content-OIData

7 Construct PI-TBS:

hPIData the result of Step 5

hOIData the result of Step 6

8 Invoke “Compose SignedData (SO)” on page 156 with the following input:

s the Cardholder’s certificate

t the result of Step 7

type id-set-content-PI-TBS

9 Construct PIDualSigned:

piSignature the result of Step 8

exPIData the result of Step 3

10 Invoke “Compose Linkage” on page 146 with the following input:

t1 oiData

t2 the result of Step 4

type id-set-content-PIData

11 Construct PReqDualSigned:

piDualSigned the result of Step 9

oiDualSigned the result of Step 10

12 Append the result of Step 11 to the tag [0].

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 431

Cardholder Generates PReq, continued

Create PReqDualSigned (continued)

Step Action

13 Store in the transaction database:

pReqSigned TRUE

14 Invoke “Send Message” on page 109 with the following input:

recip the Merchant

msg the result of Step 12

ext any message extension(s) required to support
additional business functions (optional)

rrpid oiData .rrpid

lid-C piHead. transIDs. lid-C

lid-M piHead. transIDs. lid-M (if present)

xID piHead. transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 432 as of January 2, 2000

Cardholder Generates PReq, continued

Create
PReqUnsigned

Step Action

1 Receive as input:

trans the transaction record

cert-PE an instance of Certificate

piHead an instance of PIHead

oiData an instance of OIData

pi-oiLink a linkage

2 Construct the following contents of PANToken from the record in secure data
storage identified by trans. panRef :

pan PAN

cardExpiry expiration date

3 Invoke “Compose EXH” on page 180 with the following input:

r cert-PE

t pi-oiLink

p the result of Step 2

type-t id-set-content-PIUnsignedTBE

type-p id-set-content-PANToken

4 Construct PIDataUnsigned:

piHead piHead

panToken p (updated in Step 3)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 433

Cardholder Generates PReq, continued

Create PReqUnsigned (continued)

Step Action

5 Invoke “Compose Linkage” on page 146 with the following input:

t1 oiData

t2 the result of Step 4

type id-set-content-PIDataUnsigned

6 Construct PReqUnsigned:

piUnsigned the result of Step 3

oiUnsigned the result of Step 5

7 Append the result of Step 6 to the tag [1].

8 Store in the transaction database:

pReqSigned FALSE

9 Invoke “Send Message” on page 109 with the following input:

recip the Merchant

msg the result of Step 7

ext any message extension(s) required to support
additional business functions (optional)

rrpid oiData .rrpid

lid-C piHead .transIDs.lid-C

lid-M piHead .transIDs.lid-M (if present)

xID piHead .transIDs.xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 434 as of January 2, 2000

Cardholder Generates PReq, continued

Overall PReq
data

The purchase request message supports Cardholders with or without certificates. The PReq
data consists of:

• Order Instructions (OI) for the Merchant, and

• Payment Instructions (PI) which is tunneled encrypted through the Merchant to the
Payment Gateway.

If the Cardholder has a certificate, authentication and integrity are achieved using a dual
signature (PReqDualSigned) . If the Cardholder is operating without a signature certificate,
integrity is achieved by using hashes protected in the OAEP envelope (PReqUnsigned) .

PReq < PReqDualSigned, PReqUnsigned >
PReqDualSigned See page 434.

PReqUnsigned See page 435.

Table 33: PReq Data

PReqDualSigned
data

The PReqDualSigned is created by Cardholders with certificates.

PReqDualSigned {PIDualSigned, OIDualSigned}
PIDualSigned See “PI (Payment Instructions)” on page 371.

OIDualSigned L(OIData, PIData)
OIData See page 436.

PIData {PIHead, PANData}

See page 373 for PIHead.

See page 381 for PANData .

Table 34: PReqDualSigned Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 435

Cardholder Generates PReq, continued

PReqUnsigned
data

The PReqUnsigned is created by Cardholders without certificates.

PReqUnsigned {PIUnsigned, OIUnsigned}
PIUnsigned See “PI (Payment Instructions)” on page 371.

OIUnsigned L(OIData, PIDataUnsigned)
OIData See page 436.

PIDataUnsigned {PIHead, PANToken}

See page 373 for PIHead.

See page 382 for PANToken .

Table 35: PReqUnsigned Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 436 as of January 2, 2000

Cardholder Generates PReq, continued

Common PReq
data

The following data is common to both PReqDualSigned and PReqUnsigned .

OIData, the order data, carries data to link the purchase request to the prior shopping and
ordering dialogue between the Cardholder and the Merchant.

HODInput , the hash of the order description, provides a secure linkage of the
shopping/ordering dialogue and the purchase request. All data in the hash must be exchanged
between the Cardholder and the Merchant out-of-band to SET before the purchase request is
sent.

OIData {TransIDs, RRPID, Chall-C, HOD, ODSalt, [Chall-M], BrandID,
BIN, [ODExtOIDs], [OIExtensions]}

TransIDs Copied from PInitRes , if present; see page 370.

RRPID Request/response pair ID.

Chall-C Copied from corresponding PInitReq .

HOD DD(HODInput)

Links OIData to PurchAmt without copying PurchAmt into OIData,
which would create confidentiality problems.

ODSalt Copied from HODInput .

Chall-M Merchant’s challenge to Cardholder’s signature freshness.

BrandID Cardholder’s chosen payment card brand.

BIN Bank Identification Number from the cardholder’s account number (first
six digits).

ODExtOIDs List of object identifiers from ODExtensions in the same order as the
extensions appeared in ODExtensions .

OIExtensions The data in an extension to the OI should relate to the Merchant’s
processing of the order.

Note: The order information is not encrypted so this extension shall not
contain confidential information.

Table 36: OIData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 437

Cardholder Generates PReq, continued

Common PReq data (continued)

HODInput {OD, PurchAmt, ODSalt, [InstallRecurData],
[ODExtensions]}

OD The Order Description. This information is exchanged between the
Cardholder and the Merchant out-of-band to SET. The contents,
which are determined by the Merchant’s processing requirements,
will include information such as the description of the items ordered
(including quantity, size, price, etc.), the shipping address, and the
cardholder’s billing address (if required).

PurchAmt The amount of the transaction as specified by the Cardholder; this
must match the value in PIHead on page 373.

ODSalt Fresh Nonce generated by Cardholder to prevent dictionary attacks
on HOD.

InstallRecurData See page 377.

ODExtensions The data in an extension to the OD should relate to the Merchant’s
processing of the order.

The information in these extensions must be independently known to
both the Cardholder and Merchant.

Table 36: OIData, continued

HODInput
extension
guidelines

The hash of the order description provides a secure linkage of the shopping/ordering dialogue
and the purchase request. Extensions can be included in this linkage via ODExtensions .
The Cardholder shall indicate in ODExtOIDs the extensions that are included in
HODInput , and the order that they are specified in HODInput , so that the merchant can
compute HOD2.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 438 as of January 2, 2000

Merchant Prepares for PReq

Prepar e for
payment

If the PInitReq /PInitRes message pair has not been processed, the Merchant application
must receive the order out-of-band to SET. When that occurs, the Merchant must process
the order prior to processing the PReq message.

Step Action

1 Receive as input (from an application-defined interface):

order an instance of OrderRecord (see page 407)

2 Store in the transaction database:

order order

pInit FALSE

 Note: The application must provide an initial mechanism to retrieve the record
since lid-M will not be contained in the PReq.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 439

Merchant Processes PReq

Process PReq

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of PReq

ext any message extension(s) required to support
additional business functions (optional)

This procedure uses the following internal variables:

completionCode an instance of CompletionCode

signedPReq an instance of BOOLEAN

2 Set completionCode to orderReceived.

3 Examine the tag at the beginning of msg .

• If the tag is [0], set signedPReq to TRUE and continue with Step 4.

• Otherwise, set signedPReq to FALSE and continue with Step 11.

Processing steps for PReqDualSigned

4 Designate:
• msg .pReqDualSigned.piDualSigned as pi ,
• msg .pReqDualSigned.oiDualSigned.t1 as oiData and
• msg .pReqDualSigned.oiDualSigned.t2 as hPIData .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 440 as of January 2, 2000

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

5 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• serialNumber matches
pi .piDualSigned.recipientInfos[1].issuerAndSerialNumber .

If found, designate the certificate as cert-PE .

Otherwise, invoke “Create Error Message” on page 135 with the following input:

errorCode missingCertificateCRLorBCI

6 Invoke “Compose DetachedDigest” on page 143 with the following input:

t oiData

type id-set-content-OIData

Designate the result as hOIData .

7 Construct PI-TBS:

hPIData hPIData

hOIData hOIData

8 Create a signature with the SO operator Invoke “Verify SignedData (SO)” on
page 157 with the following input:

t the result of Step 7

d pi .piSignature

type id-set-content-PI-TBS

Compare the result with msg .pReqDualSigned.piDualSigned.piSignature .
If they are not equal, return an Error message with ErrorCode set to
signatureFailure.

9 From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer , and

• serialNumber matches
msg .signerInfos[1].issuerAndSerialNumber.serialNumber .

Designate the certificate as cert-CS .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 441

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

10 Validate the following contents of oiData :

brandID cert-CS .subject.organizationName

If errors occur during validation, set completionCode to orderRejected and
continue with Step 24.

Otherwise, continue with Step 15.

Processing steps for PReqUnsigned

11 Designate:
• msg .pReqUnsigned.piUnsigned as pi and
• msg .pReqUnsigned.oiUnsigned.t1 as oiData and
• msg .pReqUnsigned.oiUnsigned.t2 as hPIData .

12 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• serialNumber matches
pi .piUnsigned.recipientInfos[1].issuerAndSerialNumber .

If found, designate the certificate as cert-PE .

Otherwise, invoke “Create Error Message” on page 135 with the following input:

errorCode missingCertificateCRLorBCI

13 If cert-PE .cardCertRequired is TRUE, return a PRes with CompletionCode
set to signatureRequired invoke “Create Error Message” on page 135 with the
following input:

errorCode signatureRequired

14 Invoke “Compose DetachedDigest” on page 143 with the following input:

t oiData

type id-set-content-OIData

Designate the result as hOIData .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 442 as of January 2, 2000

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

Common processing steps

15 Validate the following contents of oiData :

rrpid hdr. rrpid

transIDs.lid-C hdr. messageIDs. lid-C

transIDs.lid-M hdr .messageIDs. lid-M (if present)

transIDs.xID hdr .messageIDs. xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

16 Retrieve the transaction record based on oiData .transIDs.xID and designate it as
trans . If not found, invoke “Create Error Message” on page 135 with the
following input:

errorCode unknownXID

Verify LID-C and LID-M with record. If mismatch, return an Error message with
ErrorCode set to unknownLID. Otherwise, verify Chall-M with record. If
mismatch, return an Error message with ErrorCode set to challengeMismatch. If
trans .pInit is FALSE, continue with Step 20.

17 From the message database, retrieve the instance of PInitResData that
corresponds to hdr .messageIDs.xID .

• If found, designate it as initRes .
• Otherwise, invoke “Create Error Message” on page 135 with the following

input:

errorCode unknownXID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 443

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

18 Validate the following contents of oiData :

chall-M initRes .chall-M

transIDs.lid-C initRes .transIDs.lid-C

transIDs.lid-M initRes .transIDs.lid-M (if present)

transIDs.xID initRes .transIDs. xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input based on the field that failed:

errorCode lid-C unknownLID

lid-M unknownLID

chall-M challengeMismatch

xID unknownXID

19 Validate the following contents of oiData :

brandID trans .brandID

If errors occur during validation, set completionCode to orderRejected and
continue with Step 24.

20 If trans .order.purchAmt is less than or equal to zero, set completionCode to
meaninglessRatio and continue with Step 24.

21 Construct fresh HODInput:

od trans. order.od

purchAmt trans .order.purchAmt

odSalt oiData .odSalt

installRecurData trans .order.installRecurData

odExtensions trans .order.ext

22 Invoke “Compose DetachedDigest” on page 143 with the following input:

t the result of Step 21

type id-set-content-HODInput

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 444 as of January 2, 2000

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

23 Validate the following contents of oiData :

hod the result of Step 22

If errors occur during validation, set completionCode to orderRejected.

Note: An out-of-band mechanism may also decide that the order cannot be
processed (for example, the item ordered may no longer be available). In this case
also, set completionCode to orderRejected.

24 Construct PResPayload:

completionCode completionCode

pRsExtensions any message extension(s) required to support
additional business functions (optional)

25 If trans .pInit is FALSE, construct TransIDs:

lid-C oiData .transIDs.lid-C

lid-M a unique local identifier (optional)

xID oiData .transIDs.xID

pReqDate oiData .transIDs.pReqDate

language oiData .transIDs.language

Otherwise, copy trans .transIDs to an instance of TransIDs and update the
following components:

pReqDate oiData .transIDs.pReqDate

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 445

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

26 Store in the transaction database:

chall-C oiData .chall-C

chall-M oiData .chall-M

completionCode completionCode

hod the result of Step 22

hOIData hOIData

oiData oiData

peSubject cert-PE .subject

peThumb the Thumbprint of cert-PE

pi pi

pReqRRPID oiData .rrpid

signedPReq signedPReq

signer cert-CS. subject

transIDs the result of Step 25

In addition, if the trans .pInit is FALSE, store in the transaction database:

bin oiData .bin

brand oiData .brandID without Product

brandID oiData .brandID

pBIN cert-PE .subject.commonName.BIN

27 If completionCode is not orderReceived, continue with Step 28.

Otherwise, determine if a response to the Cardholder will be generated
immediately, or if additional processing will be attempted first.

• If the response will be generated immediately, continue with Step 28.

• If the response will be deferred, continue with Step 30.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 446 as of January 2, 2000

Merchant Processes PReq, continued

Process PReq (continued)

Step Action

Immediate response

28 Store in the transaction database:

pResPending FALSE

Designate the resulting record as trans .

29 Invoke “Create PRes” on page 447 with the following input:

trans trans

rrpid oiData .rrpid

chall-C oiData .chall-C

pRes TRUE

Stop processing.

Delayed response

30 Store in the transaction database:

pResPending TRUE

Designate the resulting record as trans .

31 Invoke “Preparation for authorization” on page 500 with the following input:

trans trans

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 447

Merchant Generates PRes

Create PRes

Step Action

1 Receive as input:

trans the transaction record

rrpid an instance of RRPID

chall-C an instance of Challenge

pRes an instance of BOOLEAN

2 Create an empty PResPayloadSeq. For each perAuth in trans , append
trans .perAuth.pResPayload (if present) to the PResPayloadSeq.

If none is found:

• Construct PResPayload:

completionCode orderReceived

• Append it to PResPayloadSeq.

3 Retrieve the BrandCRLIdentifier for the brand identified by trans .brand and
designate it as bci ; retrieve its Thumbprint and designate it as bciThumb .

If trans .pInitThumbs includes bciThumb , set bci to NULL.

4 Construct PResData:

transIDs trans .transIDs

rrpid trans. pReqRRPID

chall-C trans .chall-C

brandCRLIdentifier bci

pResPayloadSeq the result of Step 2

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 448 as of January 2, 2000

Merchant Generates PRes, continued

Create PRes (continued)

Step Action

5 Invoke “Compose SignedData (S)” on page 150 with the following input:

s the Merchant’s signature certificate

t the result of Step 4

type id-set-content-PResData

6 Store in the message database:

PResData the result of Step 4

7 Store in the transaction database:

pResPending FALSE

8 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder

msg the result of Step 5 (see Note)

ext any message extension(s) required to support
additional business functions (optional)

rrpid rrpid

lid-C trans .transIDs. lid-C

lid-M trans .transIDs. lid-M (if present)

xID trans .transIDs. xID

 Note: If pRes is TRUE, msg is PRes; otherwise, msg is InqRes .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 449

Merchant Generates PRes, continued

PRes data

PRes S(M, PResData)
PResData {TransIDs, RRPID, Chall-C, [BrandCRLIdentifier],

PResPayloadSeq}
TransIDs Copied from PReq; see page 370.

RRPID Request/response pair ID.

Chall-C Copied from corresponding PInitReq .

BrandCRLIdentifier List of current CRLs for all CAs under a Brand CA. See page 347
in Part II.

PResPayloadSeq {PResPayload +}

One entry per authorization performed. Note: A reversal removes
the data from PResPayload .

If no authorizations have been performed, a single entry with the
appropriate status appears.

PResPayload See page 450.

Table 37: PRes Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 450 as of January 2, 2000

Merchant Generates PRes, continued

PResPayload
data

PResPayload {CompletionCode, [Results], [PRsExtensions]}
CompletionCode Enumerated code indicating completion status of transaction. See

page 452.

Results {[AcqCardMsg], [AuthStatus], [CapStatus],
[CredStatusSeq]}

PRsExtensions Note: The purchase response is not encrypted so this extension shall
not contain confidential information.

AcqCardMsg Copied from AuthRes . See page 379.

AuthStatus {AuthDate, AuthCode, AuthRatio, [CurrConv]}
CapStatus {CapDate, CapCode, CapRatio}

Data only appears if CapReq corresponding to the authorization
has been performed. Note: A CapRevReq removes the data.

CredStatusSeq {CreditStatus +}

Data only appears if CredReq corresponding to the authorization
has been performed. Note: A CredRevReq removes the data.

AuthDate Date of authorization; copied from AuthRRTags.Date (see
page 506).

AuthCode Enumerated code indicating outcome of payment authorization
processing (see page 541); copied from AuthResPayload (see
page 539).

AuthRatio AuthReqAmt ÷ PurchAmt

For AuthReqAmt , see “AuthReqPayload” on page 507 or
AuthNewAmt , see “AuthRevReq” on page 568.

For PurchAmt , see “OIData” on page 436. After a partial
reversal, the new amount replaces the original amount.

CurrConv {CurrConvRate, CardCurr}

Currency conversion information; copied from AuthResPayload
(see page 539).

Table 38: PResPayload Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 451

Merchant Generates PRes, continued

PResPayload data (continued)

CapDate Date of capture; copied from CapPayload (see page 604).

CapCode Enumerated code indicating status of capture (see page 620); copied
from CapResPayload (see page 619).

CapRatio CapReqAmt ÷ PurchAmt

For CapReqAmt , see “CapPayload” on page 604. For
PurchAmt , see “OIData” on page 436.

CreditStatus {CreditDate, CreditCode, CreditRatio}

Data only appears if corresponding CreditReq has been
performed. Note: A CredRevReq removes the data.

CreditDate Date of credit; copied from CapRevOrCredReqData.
CapRevOrCredReqDate (see page 626).

CreditCode Enumerated code indicating status of credit (see page 626); copied
from CapRevOrCredResPayload.CapRevOrCredCode (see
page 626).

CreditRatio CapRevOrCredReqAmt ÷ PurchAmt

For CapRevOrCredReqAmt , see “” on page 626.

For PurchAmt , see “OIData” on page 436.

Table 38: PResPayload Data, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 452 as of January 2, 2000

Merchant Generates PRes, continued

CompletionCode The following values are defined for CompletionCode .

meaninglessRatio The purchase amount for the transaction was less than or equal to
zero and therefore, the ratio cannot be computed.

This value will appear in the only instance of PResPayload and
will not be accompanied by Results .

orderReceived The order has been received by the merchant, but has not been
authorized.

This value will appear in the only instance of PResPayload and
will not be accompanied by Results .

orderRejected The order (or some portion of it) cannot be processed.

This value may appear in any instance of PResPayload
(although it will usually appear in only the final instance). It may
be accompanied by Results if the reason for the order being
rejected is the result of the authorization.

orderNotReceived There is no transaction information with matching TransIDs
available in the merchant database.

This value will appear in the only instance of PResPayload and
will not be accompanied by Results .

authorizationPerformed The transaction has been authorized.

This value may appear in any instance of PResPayload and will
be accompanied by Results .

capturePerformed The transaction has been authorized and submitted for payment.

This value may appear in any instance of PResPayload and will
be accompanied by Results .

creditPerformed The transaction has been authorized and submitted for payment
and one or more credits has been issued for the transaction.

This value may appear in any instance of PResPayload and will
be accompanied by Results .

Table 39: Enumerated Values for CompletionCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 453

Cardholder Processes PRes

Process PRes

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of SignedData

ext any message extension(s) required to support
additional business functions (optional)

2 Invoke “Verify SignedData (S)” on page 153 with the following input:

d msg

type id-set-content-PResData

Designate the value of t returned as res .

3 Validate the following contents of res :

rrpid hdr. rrpid

transIDs.lid-C hdr. messageIDs. lid-C

transIDs.lid-M hdr .messageIDs. lid-M

transIDs.xID hdr .messageIDs. xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

4 Retrieve the transaction record based on res.transIDs.lid-C .

• If found, designate as trans .

• Otherwise, invoke “Create Error Message” on page 135 with the following
input:

errorCode unknownLID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 454 as of January 2, 2000

Cardholder Processes PRes, continued

Process PRes (continued)

Step Action

5 Validate the following contents of res :

xID trans .xID

rrpid trans .pReqRRPID

chall-C trans .chall-C

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input based on the field that failed:

errorCode xID unknownXID

rrpid unknownRRPID

chall-C challengeMismatch

6 Copy res.PResPayloadSeq to an instance of PResPayloadSeq and designate it
as payloadSeq .

7 For each entry in payloadSeq :

• Designate the entry as item .
• If item .results.acqCardMsg is present, perform Steps 8 through 9.

8 Decrypt item .results.acqCardMsg using the algorithm and key specified in
trans .acqBackKeyData .

Note: If trans .acqBackKeyData is not present or if the decryption fails, ignore
AcqCardMsg .

9 Update the following contents of item :

acqCardMsg the result of Step 8

10 Store in the transaction database:

pResPayloadSeq payloadSeq

11 Delete from the message database the instance of PIHead and the instance of
OIData in which transIDs.lid-C matches trans .lid-C .

12 Format and display the data stored in Step 10. See “Displaying PResPayload ”
on page 455 for additional information.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 455

Cardholder Processes PRes, continued

Displaying
PResPayload

The display of the data contained in the PResPayloadSeq of PRes presents a challenge to
the application developer. The contents can be a single CompletionCode or a sequence of
results containing data about multiple authorizations and captures; further, each authorization
and capture pair may be accompanied by zero, one, or multiple credits.

The application developer should choose a display format that is consistent with the contents
of PResPayloadSeq . For example:

• if a single CompletionCode is present, the display might consist of a textual
representation of the code;

• if multiple authorization and capture pairs are present, the display might consist of a grid
showing the date and amount of each authorization and capture as well as the dates and
amounts of any credits.

All amount ratios shall be converted to amounts before displaying the data to the user. This
conversion is performed by multiplying the amount ratio by the purchase amount from the
transaction database.

If currency conversion data is available for any authorization, the amount should include the
transaction currency and the cardholder’s billing currency.

AuthCode , CapCode and CreditCode values should be converted to meaningful text
unless the meaning is obvious. For example, an AuthCode of approved is implied by
displaying the amount of the authorization, however, declined is not.

If AcqCardMsg is present, its decrypted contents should be formatted for display to the
user:

• If acqCardText is present, it should be included in the display of other data from the
PResPayloadSeq .

• If acqCardURL is present, the user interface should include a mechanism for the user to
access the site indicated in the URL.

• If acqCardPhone is present, it should be included in the display of other data from the
PResPayloadSeq along with an explanation consistent with AcqCardCode such as
“Call customer service at …”.

Future displays
and updates

The data from the latest PRes or InqRes should be maintained in the transaction database
and available for the user to display at any time. In addition, the user should be provided with
a convenient mechanism to request an update of the data.

If a failed message is subsequently successful, do not display any data about the failed
message.

The application should ensure that a reasonable amount of time separates an InqReq from
the prior request so that users choosing “Update” repeatedly do not flood the merchant
system with messages. For example, the application may require at least one minute to pass
between receiving a PRes or InqRes and submitting another InqReq .

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 456 as of January 2, 2000

Section 3
Inquiry Request/Response Processing

Overview

Introduction The inquiry message pair enables the Cardholder to inquire as to the status of a purchase
transaction.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 InqReq

 InqRes

Figure 5: InqReq /InqRes Message Pair

Purpose This sequence of messages is optional. The cardholder may send the inquiry request message
to the Merchant at any time after PReq PRes, to inquire as to the status of a transaction.
Since it may be sent repeatedly, it includes its own challenge, unique to each invocation, and
TransIDs to identify the intended transaction.

Note: Until the PRes is received, a cardholder who wishes to inquire about a PReq must
re-send the PReq (which is an idempotent message)..

The response message is of the same format as PRes, but is a distinct message, since
otherwise it would signal the Merchant’s final report on the transaction.

The Merchant is required to verify that the certificate accompanying InqRes matches the
certificate originally used with PRes. This prevents one cardholder from inquiring about
another’s purchases.

Cardholders without certificates do not sign inquiries, which means that the integrity of
inquiry messages is not guaranteed.

Variations An inquiry request may be sent at any time after the receipt of a PRes. Multiple inquiry
messages may be sent regarding the same transaction.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 457

Cardholder Generates InqReq

Create InqReq

Step Action

1 Receive as input:

trans the transaction record

2 Construct TransIDs:

lid-C trans .lid-C

lid-M trans .lid-M (if present)

xID trans .xID

pReqDate trans .pReqDate

language trans .language

3 Construct InqReqData:

transIDs the result of Step 2

rrpid a fresh statistically unique RRPID

chall-C2 a fresh random challenge

inqRqExtensions any message extension(s) required to support
additional business functions (optional)

4 If trans .pReqSigned is FALSE, append the result of Step 3 to the tag [1] and
continue with Step 7.

5 Invoke “Compose SignedData (S)” on page 150 with the following input:

s the Cardholder’s certificate

t the result of Step 3

type id-set-content-InqReqData

6 Append the result of Step 5 to the tag [0].

7 Invoke “Send Message” on page 109 with the following input:

recip the Merchant

msg the result of Step 4 or 6

ext any message extension(s) required to support
additional business functions (optional)

rrpid InqReqData.rrpid

lid-C trans .lid-C

lid-M trans .lid-M (if present)

xID trans .xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 458 as of January 2, 2000

Cardholder Generates InqReq, continued

InqReq data

InqReq < InqReqSigned, InqReqData >
InqReqSigned S(C, InqReqData)
InqReqData {TransIDs, RRPID, Chall-C2, [InqRqExtensions]}
TransIDs Copied from the most recent of the following: PReq (see page 434),

PRes (see page 449), or InqRes (see page 462).

RRPID Request/response pair ID.

Chall-C2 Fresh Cardholder challenge to Merchant’s signature.

InqRqExtensions Note: The inquiry request is not encrypted so this extension shall not
contain confidential information.

Table 40: InqReq Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 459

Merchant Processes InqReq

Process InqReq

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of InqReq

ext any message extension(s) required to support
additional business functions (optional)

This procedure uses the following internal variables:

signedInqReq an instance of BOOLEAN

2 Examine the tag at the beginning of msg .

• If the tag is [0], set signedInqReq to TRUE and continue with Step 3.

• Otherwise, set signedInqReq to FALSE and continue with Step 4.

3 Invoke “Verify SignedData (S)” on page 153 with the following input:

d msg (without the leading tag [0])

type id-set-content-InqReqData

Designate the value of t returned as req . Continue with Step 5.

4 Designate the portion of msg that follows the leading tag [1] as req .

5 Validate the following contents of req :

rrpid hdr. rrpid

transIDs.lid-C hdr. messageIDs.lid-C

transIDs.lid-M hdr .messageIDs.lid-M

transIDs.xID hdr .messageIDs.xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 460 as of January 2, 2000

Merchant Processes InqReq, continued

Process InqReq (continued)

Step Action

6 Retrieve the transaction record whose xID matches req.transIDs.xID and
designate it as trans . If not found, continue with Step 10.

7 If trans .signedPReq is TRUE and signedInqReq is FALSE, return an
InqRes with CompletionCode set to signatureRequired invoke “Create Error
Message” on page 135 with the following input:

errorCode signatureRequired

8 If trans .signedPReq is FALSE, continue with Step 9.

From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer , and

• serialNumber matches
msg .signerInfos[1].issuerAndSerialNumber.serialNumber .

Designate the certificate as cert-CS .

Compare the following values:

trans .signer.commonName cert-CS .subject.commonName

If mismatch, invoke “Create Error Message” on page 135 with the following
input:

errorCode unknownXID

9 Invoke “Create PRes” on page 447 with the following input:

trans trans

rrpid req .rrpid

chall-C req .chall-C2

pRes FALSE

This step completes the processing of InqReq when the record is found in the
transaction database.

10 Invoke “Create InqRes ” on page 461 with the following input:

req req

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 461

Merchant Generates InqRes

Create InqRes The creation of an InqRes is identical to the creation of a PRes. The following processing
steps are invoked when the transaction is not found in the database. If the transaction is
found, “Create PRes” on page 447 is invoked.

Step Action

1 Receive as input:

req an instance of InqReqData

2 Construct TransIDs:

lid-C req.transIDs.lid-C

lid-M req.transIDs.lid-M (if present)

xID req.transIDs.xID

pReqDate req.transIDs.pReqDate

paySysID req.transIDs.paySysID (if present)

language req.transIDs.language

3 Construct PResPayload:

completionCode orderNotReceived

4 Construct PResData:

transIDs the result of Step 2

rrpid req.rrpid

chall-C req.chall-C2

brandCRLIdentifier the BrandCRLIdentifier for the BrandID used
in the InqReq (if available)

pResPayloadSeq the result of Step 3

5 Invoke “Compose SignedData (S)” on page 150 with the following input:

s the Merchant’s signature certificate for the
BrandID used in the InqReq is available or any
supported brand if not

t the result of Step 4

type id-set-content-PResData

Note: If the merchant does not have a signature certificate for trans .brandID ,
any available merchant certificate may be used.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 462 as of January 2, 2000

Merchant Generates InqRes, continued

Create InqRes (continued)

Step Action

6 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder

msg the result of Step 5

ext any message extension(s) required to support
additional business functions (optional)

rrpid req.rrpid

lid-C req.transIDs.lid-C

lid-M req.transIDs.lid-M (if present)

xID req.transIDs.xID

InqRes data

InqRes This is identical to a PRes; see page 449.

Table 41: InqRes Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 463

Cardholder Processes InqRes

Process InqRes

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of SignedData

ext any message extension(s) required to support
additional business functions (optional)

2 Invoke “Process PRes” on page 453 with the following input:

hdr hdr

msg msg

ext ext

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 464 as of January 2, 2000

Chapter 3
Merchant/Payment Gateway Messages

Overview

Introduction Chapter 3 describes messages exchanged between the Merchant and the Payment Gateway.

Organization The following sections are included:

Section Title Contents Page

1 Authorization
Request/Response
Processing

Presents the AuthReq and AuthRes messages,
which support the authorization stage of the
payment transaction.

497

2 Authorization
Reversal
Request/Response
Processing

Presents the AuthRevReq and AuthRevRes
messages, providing for the reduction or
cancellation of a previous authorization.

559

3 Capture
Request/Response
Processing

Presents the CapReq and CapRes messages,
which support the capture stage of the payment
transaction.

591

4 Capture Reversal or
Credit Data

Presents the data structures used by Capture
Reversal, Credit, and Credit Reversal messages.
The processing of these messages is discussed in
the next three sections.

626

5 Capture Reversal
Request/Response
Processing

Presents the CapRevReq and CapRevRes
messages, which support the reversal of
previously captured transactions.

626

6 Credit
Request/Response

Presents the CredReq and CredRes messages,
which support credits against transactions which
have been captured and cleared.

626

7 Credit Reversal
Request/Response
Processing

Presents the CredRevReq and CredRevRes
messages, which support reversal of previously
granted credits.

626

8 Payment Gateway
Certificate
Request/Response
Processing

Presents the PCertReq and PCertRes
messages, which enable a Merchant to request and
receive Payment Gateway encryption certificates,
which the Merchant uses to send encrypted
messages to the Payment Gateway.

626

9 Batch Administration
Request/Response
Processing

Presents the BatchAdminReq and
BatchAdminRes messages, which enable the
Merchant to request the Payment Gateway to
open and close capture batches, and to query their
status and contents.

626

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 465

Overview, continued

One capture
per
authorization

In SET Version 1.0, there is at most one capture for every authorization.

In general payment card processing, there are two notable exceptions to this one-to-one
relationship:

• For hotel stays or car rentals, multiple authorizations may precede a single capture (for
example, if the stay or rental is extended, or if incidentals such as phone calls exceed the
original estimate). This does not apply to SET, as hotel/car rental transactions via SET are
for prepaid hotel stays or car rentals only. If there are additional charges, a separate,
non-SET authorization and capture are necessary.

• Multiple captures can be processed for a single authorization when the goods purchased
are airline/railway tickets. Future versions of SET may support splitting the capture so that
there is one authorization per itinerary with a separate capture record per passenger.

Encryption The Payment Gateway will encrypt responses to the Merchant using the key from the most
recently received Merchant key encryption certificate. A request message shall contain at
most one Merchant key encryption certificate.

Addition al
Payment
Gateway
records

In addition to the message database and the transaction database, the Payment Gateway must
maintain records of the objects listed in Table 42 on page 466 and Table 43 on page 467.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 466 as of January 2, 2000

Overview, continued

Payment
Gateway PI
records

The data to be stored to determine whether an incoming PI belongs to one of the categories
below is at the discretion of the Payment Gateway vendor. For example, the Payment
Gateway could keep a list that contains the XID and AuthRRPID of an AuthReq and the
SHA-1 hash of the PI.

The payment gateway must provide a mechanism to link the usage of a PI to a specific
authorization request (AuthRRPID).

data conditions for inclusion keep data:

used PIs A PI (either Cardholder-created or an authToken) is on this list
if :

• in response to the AuthReq which included it, the Payment
Gateway sent an AuthRes with authCode = approved (and
the AuthReq has not been completely reversed); or

• an initial authCode of callIssuer has been converted to
approved (as described in “conditional PIs” below)

as long as the PI would
otherwise be valid for an
authorization or reversal
request

conditional PIs A PI (either Cardholder-created or an authToken) is on this list
if, in response to the AuthReq that included it, the Payment
Gateway sent an AuthRes with authCode = callIssuer, and the
AuthReq has not been subsequently reversed.

If the Payment Gateway is subsequently notified that the
authorization is approved (by receiving a CapReq including an
approvalCode), the PI is moved to the list of used PIs.

as long as the PI would
otherwise be valid for an
authorization or reversal
request

conditional
AuthToken s

An AuthToken is on this list if the Payment Gateway included it
in an AuthRes with authCode = callIssuer, and the AuthReq
has not been subsequently reversed.

If the Payment Gateway is subsequently notified that the
authorization is approved (by receiving a CapReq including an
approvalCode), the AuthToken is moved to the list of used PIs.

as long as the
AuthToken would
otherwise be valid for an
authorization request

invalid
AuthToken s

An AuthToken is on this list if:

• the Payment Gateway included it in an AuthRes with
authCode = callIssuer, and:

• the Payment Gateway has received a new AuthReq with the
original PI; or

• the AuthReq in response to which the callIssuer AuthRes
was returned has been completely reversed.

as long as the
AuthToken would
otherwise be valid for an
authorization request

Table 42: Payment Gateway PI Records

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 467

Overview, continued

Payment
Gateway RRPID
records

The Payment Gateway must keep track of when outstanding authorization requests have been
captured. The data to be stored to determine whether an incoming RRPID corresponds to an
authorization request and belongs to one of the categories below is at the discretion of the
Payment Gateway vendor.

data conditions for inclusion keep data:

captured RRPIDs An RRPID is on this list if a capture has been successfully
processed (whether by CapReq or by AuthReq with
CaptureNow) and has not been reversed.

as long as a capture
request for the RRPID
would be valid

fully reversed
RRPIDs

An RRPID is on this list if it identifies a capture reversal that was
successfully processed, whether by CapRevReq or by
AuthRevReq with CaptureNow .

as long as a capture
reversal request for the
RRPID would be valid

credited RRPIDs An RRPID is on this list if it identifies at least one credit that was
successfully processed and has not been reversed.

as long as a capture
reversal or credit
reversal for the RRPID
would be valid

CaptureNow
RRPIDs

An RRPID is on this list if it was submitted for capture in an
AuthReq with CaptureNow .

as long as a capture
reversal for the RRPID
would be valid

CapToken
RRPID

An RRPID is on this list if a CapToken was returned in the most
recent Auth Res or AuthR evRes for this RRPID

as long as a capture
request for the RRPID
would be valid

Table 43: Payment Gateway RRPID Records

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 468 as of January 2, 2000

Section 1
Batch Processing

Overview

Introduction This section includes procedures for batch processing, which are invoked from subsequent
sections. The following information is included

• BatchData
• Merchant Batch Procedures
• Shared Batch Procedures (that is, those that are invoked by both Merchant and Payment

Gateway)
• Payment Gateway Batch Procedures

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 469

BatchData

BatchData For the purposes of this documentation, a logical record is defined containing data that
applies to a capture batch. These records are stored in the batch database. The actual
implementation of collecting and passing this data is at the discretion of the application
developer.

This information must be retained while the batch is open and may need to be retained
longer. For example, the Merchant or Acquirer may require that the information be retained
for several days after the batch has been closed.

If information for multiple batches using the same BatchID appear in the database, the
application developer must determine an appropriate method to retrieve the appropriate
record. For example, the retrieval process may always retrieve the most recent batch for the
given BatchID or it may only retrieve records for batches created within a specified range of
days (such as the past seven days).

Note: when the Payment Gateway retrieves records, it must restrict its search to records for
the Merchant making the request.

BatchData { batchID, brandAndBINSeq, availableSeqNum,
[batchStatus], [remoteBatchStatus],
[transactionDetailSeq]], outstandingRequests , state ,
reconciled }

batchID identification of the settlement batch for Merchant-Acquirer
accounting

brandAndBINSeq an instance of BrandAndBINSeq that contains the brand and BIN
combinations permitted within the batch

availableSeqNum Optional: If BatchSequenceNum is a monotonically
increasing number, this is an integer value of the next available
value; otherwise, the implementation of this processing is at the
discretion of the application developer, but it must ensure that
every assigned value is unique within the batch.

batchStatus optional: an instance of BatchStatus that contains the current
status information for the batch

remoteBatchStatus optional: an instance of BatchStatus that contains the status
information for the batch supplied by the remote system

transactionDetailSeq optional: an instance of TransactionDetailSeq that contains the
current transaction details for the batch

outstandingRequests a list of RRPID values that correspond to outstanding requests
that affect the batch and a count of the items in that request

Note: The batch cannot be closed by the Merchant while any
entries appear in this list.

Table 44: BatchData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 470 as of January 2, 2000

BatchData, continued

BatchData (continued)

state an ENUMERATED value indicating the state of the batch:

open the batch is open and available for
accepting transactions

closing the batch is in the process of being
closed

closed the batch is closed

transmitting the data from the closed batch is
being transmitted to an upstream
system

transmitted the data from the closed batch has
been transmitted to an upstream
system

Additional capture and credit requests can only be submitted
against the batch when the state is open. Depending on the
capabilities of the Payment Gateway, capture and credit reversals
may be able to be submitted against a batch that has not been
transmitted to an upstream system.

Note: transmitting and transmitted only apply to batches
accumulated locally by the Payment Gateway.

reconciled optional: an instance of BOOLEAN indicating whether the batch
information has been reconciled using BatchStatus provided
by the remote system.

Note: when this field is used, any operation that changes the
contents of the batch must set it to FALSE so that a batch that is
changed after reconciliation does not appear to be reconciled
when it is not.

Table 44: BatchData, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 471

Merchant Batch Procedures

Overview The Merchant uses the following batch procedures:

Title Function Page

Determine batch
identification

Determines the appropriate batch for processing an item 472

Open batch Opens a batch and creates its BatchData record 474

Process batch
information

Updates batch information based on response from
Payment Gateway

476

Process BatchStatus Store remote BatchStatus in BatchData record 479

See also “Shared Batch Procedures” on page 480 for a description of batch procedures used
by both Merchant and Payment Gateway.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 472 as of January 2, 2000

Merchant Batch Procedures, continued

Determine batch
identification

This processing sequence applies to the Merchant and is invoked – only if the Merchant
can specify batch identification – by the processing sequence that creates a request for
the Payment Gateway (AuthReq , AuthRevReq , CapReq , etc.)

The Payment Gateway validates the proposed values or defines alternative values in
“Process batch identification” (on page 487), “Update batch (add item)” (on page 493),
and “Update batch (delete item)” (on page 496).

This processing sequence does the following:

• finds the batch identifier of an open batch; depending on the capabilities of the
application, the batch may be opened automatically if an appropriate batch is not
already open;

• optionally assigns a batch sequence number; and

• returns BatchID and BatchSequenceNum .

Note: These processing steps are written as though the representation of a batch
identifier that is used internally by the application and the representation sent to the
Payment Gateway are the same. However, when the range of batch identifiers used by
the Payment Gateway is limited (for example, in the range of 1 to 999), the Merchant
should use a different representation internally so that a batch is always uniquely
identified. For example, the internal representation could include the date on which the
batch was opened.

Step Action

1 Receive as input:

 brand an instance of BrandID without Product

 pBIN an instance of BIN

 rrpid an instance of RRPID

 origBatchID an instance of BatchID (optional)

2 If origBatchID is not specified, continue with Step 4.

3 From the batch database, retrieve the BatchData record that is identified by
origBatchID and designate it as batchData . If batchData .state is open:

• Designate origBatchID as batchID .

• Continue with Step 6.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 473

Merchant Batch Procedures, continued

Determine batch identification (continued)

Step Action

4 From the batch database, retrieve a BatchData record where state is open and
brandAndBINSeq contains an entry with brand and pBIN . If found:

• Designate it as batchData ;
• Designate batchData .batchID as batchID .
• Continue with Step 6.

Note: The mechanism to select a specific batch when multiple batches are open
for the brand and pBIN is determined by Merchant or Acquirer policy.

5 If a batch must be explicitly opened with BatchAdminReq , abort processing.

Otherwise:

• invoke “Open Batch” on page 474 with appropriate input values and suspend
processing until the batch is available;

• designate the value of batchID returned as batchID ; and

• retrieve from the batch database the BatchData record that is identified by
batchID and designate it as batchData .

Note: The mechanism to suspend and resume processing is at the discretion of the
application developer.

6 If origBatchID is specified and designates the same batch as batchID , continue
with Step 7.

Optional: Designate an unused batchSequenceNum from
batchData .availableSeqNum as sequenceNum and adjust
batchData .availableSeqNum accordingly.

7 Update the following contents of batchData :

outstandingRequests Add rrpid if it is not already on the list and
increment the item count.

reconciled FALSE

8 Store batchData in the batch database.:

9 Return the following:

 batchID batchID

 sequenceNum sequenceNum

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 474 as of January 2, 2000

Merchant Batch Procedures, continued

Open batch This processing sequence is invoked by “Determine batch identification” (on page 472) when
the Merchant needs to open a batch. The Payment Gateway performs similar processing by
invoking “Open gateway batch” on page 491.

This procedure does the following:

• If the merchant selects the batch identifier, optionally sends a BatchAdminReq to the
payment gateway

• Stores information about the batch in the batch database using “Create BatchData .”

Step Action

1 Receive as input:

 brandAndBINSeq an instance of BrandAndBINSeq

 pGwyBatchID an instance of BatchID (optional)

 Note: pGwyBatchID is specified if the payment gateway selects the batch
identifier or if it has overridden a value selected by the merchant.

2 If pGwyBatchID is defined:

• Designate pGwyBatchID as batchID .

• Continue with Step 5.

3 Designate an available value as batchID .

Note: The Acquirer will specify when given values are available. For example:

• the Acquirer may require that a batch ID not be reused within a certain number
of days; and/or

• the Acquirer may restrict the value of the batch ID to a certain number of digits.

4 If the Payment Gateway requires the batch to be explicitly opened:

• Invoke “Create BatchAdminRe q” on page 626 with the following input:

 cert the Merchant’s signature certificate for any
brand in brandAndBINSeq

 batchID batchID

 operation open

 brandAnd BINSeq brandAndBINSeq

 • Stop processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 475

Merchant Batch Procedures, continued

Open batch (continued)

Step Action

5 Invoke “Create BatchData ” on page 481 with the following input:

 brandAndBINSeq brandAndBINSeq

 batchID batchID

6 Return the following:

 batchID batchID

 batchData the value of batchData returned in Step 5

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 476 as of January 2, 2000

Merchant Batch Procedures, continued

Process batch
information

This processing sequence applies to the Merchant. It is invoked to process the batch
information in a response message from the Payment Gateway (AuthRes , AuthRevRes ,
CapRes , etc.).

Step Action

1 Receive as input:

 propBatchID an instance of BatchID (optional)

 propSeqNum an instance of BatchSequenceNum (optional)

 batchID an instance of BatchID

 seqNum an instance of BatchSequenceNum (optional)

 brand an instance of BrandID without Product

 pBIN an instance of BIN

 rrpid an instance of RRPID

 batchStatusSeq an instance of BatchStatusSeq (optional)

 transAmt an instance of CurrencyAmount

 transType the message being processed; one of the
following:

• AuthReq
• AuthRevReq
• CapReq
• CapRevReq
• CredReq
• CredRevReq

 origBatchID an instance of BatchID (optional)

 This procedure uses the following internal variable:

 sameBatch an instance of BOOLEAN

2 If propBatchID is not specified, continue with Step 5.

Otherwise:
• From the batch database, retrieve the BatchData record corresponding to

propBatchID and designate it as propBatchData .

• If not found, abort processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 477

Merchant Batch Procedures, continued

Process batch information (continued)

Step Action

3 Update the following contents of propBatchData :

outstandingRequests Decrement the item count for rrpid and if
the result is zero, remove rrpid from the
list.

reconciled FALSE

 Store the updated prop BatchData in the batch database.

4 If propBatchID and batchID designate the same batch, designate
propBatchData as batchData and continue with Step 7.

5 From the batch database, retrieve the BatchData record corresponding to
batchID . If found, designate it as batchData and continue with Step 6.

Otherwise, invoke “Create BatchData ” on page 481 with the following input:

 brandAndBINSeq an instance of BrandAndBINSeq that
contains brand and pBIN

Optional: Include additional entries using
criteria specified by the acquirer or in the
merchant profile.

 batchID batchID

 Designate the value of batchData returned as batchData .

6 Update the following contents of batchData :

reconciled FALSE

7 Set sameBatch to FALSE.

If origBatchID is specified and origBatchID and batchID designate the same
batch, set sameBatch to TRUE.

8 Invoke “Update BatchStatus ” on page 483 with the following input:

brand brand

 batchData batchData

 tran sAmt transAmt

 transType transType

 sameBatch sameBatch

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 478 as of January 2, 2000

Merchant Batch Procedures, continued

Process batch information (continued)

Step Action

9 If batchStatusSeq was specified, invoke “Process BatchStatus ” on page 479
with the following input:

 batchStatusSeq batchStatusSeq

10 Return:

 batchData batchData

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 479

Merchant Batch Procedures, continued

Process
BatchStatus

This processing sequence applies to the Merchant and is invoked by “Process batch
information” (on page 476) to store BatchStatus that is received from the Payment
Gateway.

Step Action

1 Receive as input:

batchStatusSeq an instance of BatchStatusSeq

2 For each BatchStatus in batchStatusSeq :

• Designate it as batchStatus .

• Perform Steps 3 through 5.

Processing for each BatchStatus

3 Retrieve from the batch database the BatchData record that corresponds to
batchStatus and designate it as batchData . If not found, continue processing
with the next item.

Note: The mechanism to match BatchStatus to BatchData is at the discretion
of the application developer.

4 Update the following contents of batchData :

remoteBatchStatus batchStatus

5 Store the updated batchData in the batch database.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 480 as of January 2, 2000

Shared Batch Procedures

Overview Both the Merchant and the Payment Gateway use the following batch procedures:

Title Function Page

Create BatchData Creates a new BatchData record for a newly opened batch481

Update BatchStatus Updates the status information in a BatchData record
after an item has been added to or deleted from a batch

483

Update BatchTotals Adjusts the totals within a BatchData record based on the
type of transaction that has been added to or deleted from
the batch.

484

See also “Merchant Batch Procedures” on page 471 and “Payment Gateway Batch
Procedures” on page 486 for a description of batch procedures used only by one entity.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 481

Shared Batch Procedures, continued

Create
BatchData

This processing sequence applies to both the Merchant and the Payment Gateway. It is
invoked by “Open batch” (on page 474) and “Open gateway batch” (on page 491) to create
BatchData for the new batch, as well as by “Process batch information” (on page 476) to
create BatchData for a batch that has been created by the Payment Gateway.

Note: The Merchant may accumulate BatchStatus locally or use information provided by
the Payment Gateway. In the event that the information is accumulated locally, the Merchant
may also choose to store the latest version received from the Payment Gateway.

Step Action

1 Receive as input:

 brandAndBINSeq an instance of BrandAndBINSeq

 batchID an instance of BatchID

2 If BatchStatus is not maintained in BatchData , continue with Step 7;
otherwise, construct BatchTotals:

 transactionCountCredit 0

 transactionTotalAmountCredit a CurrencyAmount representing a
value of zero

 transactionCountDebit 0

 transactionTotalAmountDebit a CurrencyAmount representing a
value of zero

3 Create an empty BrandBatchDetailsSeq and designate it as
brandBatchDetailsSeq .

4 For each entry in brandAndBINSeq :

• Designate the entry as brandAndBIN .

• Construct BrandBatchDetails:

 brandID brandAndBIN .brandID

 batchTotals the result of Step 2

 • Append the result to brand BatchDetails Seq.

5 Construct BatchDetails:

 batchTotals the result of Step 2

 brandBatchDetailsSeq the result of Step 4

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 482 as of January 2, 2000

Shared Batch Procedures, continued

Create BatchData (continued)

Step Action

6 Optional: Construct BatchStatus:

 openDateTime the current date and time

 batchDetails the result of Step 5

7 Construct BatchData:

 batchID batchID

 brandAndBINSeq brandAndBINSeq

 availableSeqNum 1 if this field is an INTEGER; otherwise, at
the discretion of the application developer

 batchStatus the result of Step 6

 transactionDetailSeq an empty instance of TransactionDetailSeq
(optional)

 outstandingRequests an empty list

 state open

 reconciled FALSE

8 Store the result of Step 7 in the batch database.

9 Return the following:

 batchData the result of Step 7

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 483

Shared Batch Procedures, continued

Update
BatchStatus

This processing sequence applies to both Payment Gateway and Merchant. It is invoked by
several other batch procedures to update BatchTotals in the BatchStatus .

Step Action

1 Receive as input:

 brand an instance of BrandID without Product

 batchData an instance of BatchData (see page 469)

 transAmt an instance of CurrencyAmount

 transType the message being processed; one of the
following:

• AuthReq
• AuthRevReq
• CapReq
• CapRevReq
• CredReq
• CredRevReq

 sameBatch an instance of BOOLEAN (default FALSE)

 Note: batchData is updated by these processing steps.

2 Invoke “Update BatchTotals ” on page 484 with the following input:

totals batchData .batchStatus.batchDetails.
batchTotals

 transAmt transAmt

 transType transType

 sameBatch sameBatch

 Note: this will update components in totals .

3 Designate the instance of batchData .batchStatus.batchDetails.
brandBatchDetailsSeq whose brandID field matches brand as totals .

4 Invoke “Update BatchTotals ” on page 484 with the following input:

 totals totals

 transAmt transAmt

 transType transType

 sameBatch sameBatch

 Note: this will update components in totals .

5 Store the updated batchData in the batch database.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 484 as of January 2, 2000

Shared Batch Procedures, continued

Update
BatchTotals

This processing sequence applies to both Payment Gateway and Merchant. It is invoked by
“Update BatchStatus ” (on page 483) to adjust the totals within a BatchData record based
on the type of transaction that has been added to or deleted from the batch.

Step Action

1 Receive as input:

 totals an instance of BatchTotals

 transAmt an instance of CurrencyAmount

 transType the message being processed; one of the following:

• AuthReq
• AuthRevReq
• CapReq
• CapRevReq
• CredReq
• CredRevReq

 sameBatch an instance of BOOLEAN (default FALSE)

 Note: totals is updated by these processing steps.

2 If the following conditions exist:

 transType is: and: then:

 AuthReq or
CapReq

Continue with Step 3

 AuthRevReq or
CapRevReq

sameBatch is TRUE Continue with Step 4

 AuthRevReq or
CapRevReq

sameBatch is FALSE Continue with Step 5

 CredReq Continue with Step 5

 CredRevReq sameBatch is TRUE Continue with Step 6

 CredRevReq sameBatch is FALSE Continue with Step 3

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 485

Shared Batch Procedures, continued

Update BatchTotals (continued)

Step Action

This step applies when processing a capture request (either CapReq or
AuthReq with CaptureNow) or when processing a CredRevReq against a
different batch than the CredReq .

3 Update the following components of totals :

transactionCountCredit add one (1)

transactionTotalAmtCredit add transAmt

Stop processing.

This step applies when processing a capture reversal against the same batch as the
capture; either:

• CapRevReq against the same batch as the CapReq , or
• AuthRevReq against the same batch as the AuthReq with CaptureNow .

or when processing a CredRevReq against the same batch as the CredReq .

4 Update the following components of totals :

transactionCountCredit subtract one (1)

transactionTotalAmtCredit subtract transAmt

Stop processing.

This step applies when processing a capture reversal against a different batch than
the capture; either

• CapRevReq against a different batch than the CapReq , or
• AuthRevReq against a different batch than the AuthReq with CaptureNow .

5 Update the following components of totals :

transactionCountDebit add one (1)

transactionTotalAmtDebit add transAmt

Stop processing.

This step applies when processing a CredReq .

6 Update the following components of totals :

transactionCountDebit subtract one (1)

transactionTotalAmtDebit subtract transAmt

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 486 as of January 2, 2000

Payment Gateway Batch Procedures

Overview The Payment Gateway uses the following batch procedures:

Title Function Page

Process batch
identification

Determine a BatchID or confirm one supplied by the
Merchant

487

Open gateway
batch

Open a batch using information supplied by the Merchant
or determined by the Payment Gateway

491

Update batch (add
item)

Add an item to a batch 493

Update batch
(delete item)

Delete an item from a batch 496

See also “Shared Batch Procedures” on page 480 for a description of batch procedures used
by both the Merchant and the Payment Gateway

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 487

Payment Gateway Batch Procedures, continued

Process batch
identification

This processing sequence applies to the Payment Gateway. It is invoked when processing a
Merchant request (AuthReq , AuthRevReq , CapReq , etc.) to determine the BatchI D or
to confirm the one supplied by the Merchant.

The Payment Gateway will invoke “Update batch (add item)” (on page 493) or “Update
batch (delete item)” (on page 496) to determine or confirm the BatchSequenceNum . The
Merchant may have invoked “Determine batch identification” on page 472 to determine both
BatchID and BatchSequenceNum .

Step Action

1 Receive as input:

 brand an instance of BrandID without Product

 pBIN an instance of BIN

 rrpid an instance of RRPID

 mBatchID an instance of BatchID (optional)

 transType the message being processed; one of the
following:

• AuthReq
• AuthRevReq
• CapReq
• CapRevReq
• CredReq
• CredRevReq

 origBatchID an instance of BatchID (optional)

 This procedure uses the following internal variables:

 capCode an instance of CapCode

 reversalFlag an instance of BOOLEAN

 sameBatch an instance of BOOLEAN

2 Set capCode to success and sameBatch to FALSE.

 If transType is: set reversalFlag to:

 • AuthReq,
• CapReq, or
• CredReq

FALSE

 • AuthRevReq,
• CapRevReq, or
• CredRevReq

TRUE

3 If reversalFlag is FALSE, continue with Step 8.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 488 as of January 2, 2000

Payment Gateway Batch Procedures, continued

Process batch identification (continued)

Step Action

4 Retrieve from the batch database the BatchData record that is identified by
origBatchID and designate it as origBatchData . If not found, continue with
Step 7.

5 If origBatchData .state is open or closing:

• Designate origBatchID as batchID .
• Designate origBatchData as batchData .
• Set sameBatch to TRUE.
• Continue with Step 18.

6 Optional: If origBatchID.state is not transmitting or transmitted:

• Designate origBatchID as batchID .
• Designate origBatchData as batchData .
• Set sameBatch to TRUE.
• Set batchData .state to closing.
• Continue with Step 18.

Note: If a reversal is submitted after a batch has been closed, but before the
information has been transmitted to an upstream system, the Payment Gateway
should temporarily reopen the batch to remove the item(s).

7 If a reversal can only be submitted against the same batch as the original item, set
capCode to batchClosed and continue with Step 19.

8 If only the Payment Gateway may determine the Batch ID, continue with Step 15.

If either the Payment Gateway or the Merchant may determine the BatchID and
mBatchID is omitted, continue with Step 15.

Merchant controls the selection of BatchID

9 If mBatchID is omitted, set capCode to batchDataNeeded and continue with
Step 19.

10 Retrieve from the batch database the BatchData record that corresponds to
mBatchID and designate it as batchData . If found, continue with Step 13.

11 If batches must be explicitly opened using BatchAdminReq , set capCode to
batchUnknown and continue with Step 15.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 489

Payment Gateway Batch Procedures, continued

Process batch identification (continued)

Step Action

12 Invoke “Open gateway batch” on page 491 with the following input:

batchID mBatchID

brand brand

pBIN pBIN

If the result is success, designate the value of batchData returned as
batchData . Otherwise, set capCode to the result and continue with Step 15.

13 If batchData .state is open:

• If batchData .brandAndBINSeq contains an entry with brand and pBIN ,
designate mBatchID as batchID and continue with Step 18.

• Otherwise, set capCode to batchWrong.

Otherwise, set capCode to batchClosed.

Payment gateway controls the selection of BatchID

14 If the Payment Gateway is not permitted to override the BatchID specified by the
Merchant, continue with Step 19.

15 From the batch database, retrieve a BatchData record where state is open and
brandAndBINSeq contains an entry with brand and pBIN .

If found:

• Designate it as batchData .
• Designate batchData .batchID as batchID .
• Continue with Step 18.

Note: The mechanism to select a specific batch when multiple batches are open
for the brand and pBIN is determined by acquirer policy.

16 If batches must be explicitly opened using BatchAdminReq , set capCode to
batchUnknown and continue with Step 19.

17 Invoke “Open gateway batch” on page 491 with the following input:

brand brand

pBIN pBIN

If the result is success, designate the value of batchData returned as batchData
and the value of batchData .batchID as batchID .

Otherwise, set capCode to the result and continue with Step 19.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 490 as of January 2, 2000

Payment Gateway Batch Procedures, continued

Process batch identification (continued)

Step Action

18 Update the following contents of batchData :

outstandingRequests Add rrpid if it is not already on the list and
increment the item count.

reconciled FALSE

 Store the updated batchData in the batch database.:

19 Return the following:

 batchID batchID

 capCode capCode

 batchData batchData

 sameBatch sameBatch

 Note: If transType is not CapReq, the caller must map the value of capCode to
the appropriate response values.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 491

Payment Gateway Batch Procedures, continued

Open gateway
batch

This processing sequence applies to the Payment Gateway. It is invoked by “Process batch
identification” (on page 487) to open a new batch if needed during processing. If the
Payment Gateway is not permitted to open a new batch without explicit instructions, it will
instead have returned a capCode that indicates that the Merchant must submit a
BatchAdminReq .

Step Action

1 Receive as input:

 batchID an instance of BatchID (optional)

 brand an instance of BrandID without Product
(optional)

 pBIN an instance of BIN (optional)

 brandAndBINSeq an instance of BrandAndBINSeq (optional)

 This procedure uses the following internal variables:

 status an enumerated field with a value of success
or failure

2 If batchID is specified, verify that the value is permissible according to acquirer
policy and is available. If not, set status to invalidBatchID and continue with
Step 7.

Note: The Acquirer will designate when given values are available. For example:

• the Acquirer may require that a batch ID not be reused within a certain number
of days; and/or

• the Acquirer may restrict the value of the batch ID to a certain number of digits.

3 If batchID is not specified, designate an available value as batchID .

4 If brandAndBINSeq is specified, continue with Step 6.

Otherwise, construct an instance of BrandAndBINSeq that contains brand and
pBIN (if specified). Designate it as brandAndBINSeq .

Optional: Add entries to brandAndBINSeq using criteria specified by the
acquirer or in the merchant profile.

5 If batches are not accumulated locally:
• Process batch open via existing payment card financial network.
• Set status based on the result.
• If status is not success, continue with Step 7.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 492 as of January 2, 2000

Payment Gateway Batch Procedures, continued

Open gateway batch (continued)

Step Action

6 Invoke “Create BatchData ” on page 481 with the following input:

 brandAndBINSeq brandAndBINSeq

 batchID batchID

 Set status to success.

7 Return a status of status and the following:

 batchData the value of batchData returned in Step 6

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 493

Payment Gateway Batch Procedures, continued

Update batch
(add item)

This processing sequence applies to the Payment Gateway. It is invoked when processing a
Merchant request (AuthReq , AuthRevReq , CapReq , etc.) to add an item to a batch that is
being accumulated locally. It will determine the BatchSequenceNum or confirm the one
supplied by the Merchant.

The Payment Gateway previously invoked “Process batch identification” on page 487 to
determine or confirm the BatchID . The Merchant may have invoked “Determine batch
identification” on page 472 to determine both BatchI D and BatchSequenceNum .

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

rrpid an instance of RRPID

batchData an instance of BatchData (see page 469)

sequenceNum an instance of BatchSequenceNum (optional)

transAmt an instance of CurrencyAmount

transType the message being processed; one of the
following:

• AuthReq
• AuthRevReq
• CapReq
• CapRevReq
• CredReq
• CredRevReq

payload an instance of one of the following:

• AuthReqPayload
• AuthRevReqData
• CapPayload
• CapRevOrCredReqItem
corresponding to transType .

 This procedure uses the following internal variables:

transAmtType an instance of AmountType

capCode an instance of CapCode

2 If items in batches are not identified by a sequence numbers, continue with Step 8.

3 If only the Payment Gateway may determine the Batch SequenceNum ,
continue with Step 7.

If either the Payment Gateway or the Merchant may determine the
Batch SequenceNum and sequenceN um is omitted, continue with Step 7.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 494 as of January 2, 2000

Payment Gateway Batch Procedures, continued

Update batch (add item) (continued)

Step Action

Merchant controls the selection of BatchSequenceNum

4 If sequenceNum is omitted, set capCode to batchDataNeeded and continue
with Step 13.

5 If batchData .availableSeqNum indicates that sequenceNum is available,
designate sequenceNum as pGwySeqNum and continue with Step 8.

6 If the Payment Gateway cannot override the sequence number specified by the
Merchant, set capCode to batchUnknown badSeqNum and continue with
Step 13.

Payment gateway controls the selection of BatchSequenceNum

7 From batchData .availableSeqNum , designate an unused value as
pGwySeqNum .

8 Execute brand and acquirer specific validation of the item indicated by perAuth
(including appropriate components from payload); for example, either the brand
or the acquirer may restrict the allowable difference between the authorized
amount and the captured amount. If errors occur, set capCode to an appropriate
value and continue with Step 13.

9 Add the item to the batch identified by batchData.

10 Set capCode to success.

11 Update batchData .availableSeqNum to indicate that pGwySeqNum is no
longer available.

12 Invoke “Update BatchStatus ” on page 483 with the following input.

 batchData batchData

 transAmt transAmt

 transType transType

 sameBatch FALSE

 Note: this will update components in batc hData .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 495

Payment Gateway Batch Procedures, continued

Update batch (add item) (continued)

Step Action

13 If capCode is not success and the transaction details are only stored for
successful items, continue with Step 15.

Otherwise, set transAmtType according to transType :

 If transType is one of: then set transAmtType to:

 AuthReq
CapReq
CredRevReq

credit

 AuthRevReq
CapRevReq
CredReq

debit

14 Construct TransactionDetail:

 transIDs trans .transIDs

 authRRPID perAuth .authRRPID

 brandID trans .brand

 batchSequenceNum pGwySeqNum

 reimbursementID a value from Table 28 on page 399
(optional)

 transactionAmt transAmt

 transactionAmtType transAmtType

 transactionStatus a value from Table 29 on page 399
consistent with capCode (optional)

 transExtensions any message extension(s) required to
support additional business functions
(optional)

 Append the result to batchData .transactionDetailSeq .

15 Decrement the item count for rrpid in batchData .outstandingRequests and
if the result is zero, remove rrpid from the list.

Store the updated batchData in the batch database.

16 Return:

 capCode capCode

 sequenceNum pGwySeqNum

 Note: If transType is not CapReq, the value of capCode must be mapped from
CapCode values to corresponding values for transType .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 496 as of January 2, 2000

Payment Gateway Batch Procedures, continued

Update batch
(delete item)

This processing sequence applies to the Payment Gateway. It is invoked when processing a
Merchant reversal request (AuthRevReq , CapRevReq , or CredRevReq) to delete an
item from a batch that is being accumulated locally.

The Payment Gateway previously invoked “Process batch identification” on page 487 to
determine or confirm the BatchID . The Merchant may have invoked “Determine batch
identification” on page 472 to determine both BatchID and BatchSequenceNum .

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

rrpid an instance of RRPID

batchData an instance of BatchData (see page 469)

sequenceNum an instance of BatchSequenceNum (optional)

transAmt an instance of CurrencyAmount

transType the message being processed; one of the
following:
• AuthRevReq
• CapRevReq
• CredRevReq

payload an instance of one of the following:
• AuthRevReqData
• CapRevOrCredReqItem
corresponding to transType .

2 Locate the item indicated by perAuth (including appropriate components from
payload) and delete it from the batch identified by batchData .

3 Invoke “Update BatchStatus ” on page 483 with the following input.

 batchData batchData

 transAmt transAmt

 transType transType

 sameBatch TRUE

 Note: this will update components in batchData .

4 Delete the entry that corresponds to the item from
batchData .transactionDetailSeq .

5 Decrement the item count for rrpid in batchData .outstandingRequests and
if the result is zero, remove rrpid from the list.

Store the updated batchData in the batch database.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 497

Section 2
Authorization Request/Response Processing

Overview

Introduction The authorization processing consists of two messages, a request from a Merchant to a
Payment Gateway and a response from the Payment Gateway back to the Merchant.

These messages are used both for authorization-only transactions and for authorization with
capture (sale) transactions.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

 AuthReq

 AuthRes

Figure 6: AuthReq /AuthRes Message Pair

Purpose The Authorization Request and Response message pair provide the mechanism for the
Merchant to obtain authorization for a purchase.

In the AuthReq , the Merchant sends:

• its own data about the purchase, signed and encrypted, plus
• the PI (Payment Instructions) received from the Cardholder.

Since each contains the hash of the OD and the amount, the Payment Gateway can verify that
the Merchant and Cardholder agree on the order description and the amount to be authorized.
Since the PI includes the payment card data required for the authorization, the Payment
Gateway can authorize the transaction using the existing payment card financial network.

In the AuthRes , the Payment Gateway returns the results of the authorization attempt (and
the capture attempt, if applicable).

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 498 as of January 2, 2000

Overview, continued

CaptureNow In some situations, the Acquirer may not be able to perform combined authorization and
capture even if captureNow is TRUE. If captureNow is specified and if the Acquirer does
not support capture processing, When this happens, then an AuthCode of
captureNotSupported will be returned. This indicates that the Payment Gateway only
performs authorization processing; the Merchant may must submit an AuthReq with
captureNow set to FALSE and subsequently issue an out-of-band a CapReq message to
capture the payment.

If an operator specified captureNow , the operator can resubmit the authorization request
without captureNow . However, in most cases, a SET transaction occurs without significant
operator intervention, and the system is unlikely to be able to recover from this error.

It is therefore vital that the Merchant application be correctly configured as to whether
capture processing is performed by a given Payment Gateway.

Gateway
processing of
CaptureNow

When captureNow is specified, the payment gateway shall either:

• perform concurrent authorization and capture processing by submitting a single request to
the acquirer or payment card financial network (provided that such a request is supported);
or

• submit an authorization request and if that request is approved, perform the appropriate
capture processing for the transaction.

The merchant may want to force separate processing for batch reconciliation purposes. If the
merchant specifies a BatchID in the authorization request, the payment gateway may choose
to perform the authorization and capture processing separately.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 499

Merchant Prepares for AuthReq

AuthInfo For the purposes of this documentation, a logical record is defined containing information
that must be determined by the Merchant prior to requesting authorization. The actual
implementation of collecting and passing this information is at the discretion of the
application developer.

authInfo { authReqAmt, [subsequentAuthInd], [captureNow] }

authReqAmt the amount for which authorization is to be requested:

• the amount of this shipment (which may be the only
shipment); or

• the amount of this payment in a series of installment
payments; or

• the value of goods and services incurred for this recurring
payment

Normally authReqAmt is no more than
trans .order.purchAmt less any prior authorizations.

If trans .order. installRecurData exists,
trans .order.purchAmt reflects the anticipated total of all
authorizations; each individual authorization is likely to be
much smaller, but the total of the authorizations may be
greater.

subsequentAuthInd a flag indicating Merchant requests an additional
authorization; TRUE if this authorization represents a split
shipment (except for the final shipment)

captureNow a flag indicating whether combined authorization and capture
is requested (optional)

Table 45: AuthInfo Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 500 as of January 2, 2000

Merchant Prepares for AuthReq, continued

Prepar e for
authorization

The Merchant application requires certain information to begin authorization processing. The
following processing steps describe one method of obtaining that information.

Step Action

1 Receive as input (from an application-defined interface):

trans the transaction record

authReqAmt an instance of CurrencyAmount

subsequentAuthInd an instance of BOOLEAN (default FALSE)

2 Retrieve the latest perAuth from trans . If not found, continue with Step 3.

Designate it as pr ior Auth . If pr ior Auth .authCode is callIssuer, prompt user to
determine whether it is appropriate to send this authorization request.

3 Construct the following contents of AuthInfo (see page 499):

authReqAmt authReqAmt

subsequentAuthInd subsequentAuthInd

4 Determine whether to request concurrent authorization and capture, as described
in “Capture” on page 24 in Part I, based on:

• whether the Payment Gateway identified by trans .peSubject supports
capture processing (see page 498), and

• Merchant or Acquirer guidelines.

If concurrent authorization and capture is desired, update the following contents
of AuthInfo:

captureNow TRUE

5 Invoke “Create AuthReq ” with the following input:

trans trans

authInfo authInfo

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 501

Merchant Generates AuthReq

Create AuthReq

Step Action

1 Receive as input:

trans the transaction record

authInfo an instance of AuthInfo (see page 499)

This procedure uses the following internal variables:

batchID an instance of BatchID

batchSequenceNum an instance of BatchSequenceNum

authUsesBatch an instance of BOOLEAN

2 If trans .pi is NULL, stop processing.

Note: If the authorization request was initiated by the operator, display a message
indicating that the final authorization for this transaction has already been
performed.

3 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• subject matches trans .peSubject .

If found, designate the certificate as cert-PE .

Otherwise, stop processing and display a message to the operator indicating that
corrective action must be taken to obtain a current copy of the Payment Gateway
certificate.

Note: Under normal circumstances the certificate is retrieved every 24 hours using
PCertReq and will be available in the trusted cache.

4 Construct AuthRRTags:

rrpid a fresh, statistically unique RRPID

merTermIDs from Merchant profile

date the current date and time

5 If trans .pi is an AuthToken (that is, if the tag at the beginning of PI is [2]),
retrieve from trans the perAuth record of the most recent successful
authorization and designate it as priorAuth . If not found, abort processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 502 as of January 2, 2000

Merchant Generates AuthReq, continued

Create AuthReq (continued)

Step Action

6 Construct AuthTags:

authRRTags the result of Step 4

transIDs trans .transIDs

authRetNum priorAuth .authRetNum (if present)

7 If trans .pi is an AuthToken , continue with Step 8. Otherwise, construct
CheckDigests:

hOIData trans .hOIData

hod2 trans .hod

8 Construct AuthReqPayload:

subsequentAuthInd authInfo .subsequentAuthInd

authReqAmt authInfo .authReqAmt

avsData trans .order.avsData

specialProcessing if required by the brand and product
combination identified by trans .brandID , a
value from Table 48 on page 508

cardSuspect if the Merchant is suspicious of the
Cardholder, a value from Table 49 on
page 508

requestCardTypeInd TRUE if requesting information about the
payment card type; otherwise FALSE

installRecurData trans .order.installRecurData

marketSpecAuthData trans .order.marketData

merchData from the Merchant profile (if required by
brand policy)

aRqExtensions any message extension(s) required to support
additional business functions (optional)

9 Construct AuthReqItem:

authTags the result of Step 6

checkDigests the result of Step 7

authReqPayload the result of Step 8

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 503

Merchant Generates AuthReq, continued

Create AuthReq (continued)

Step Action

10 Recommended: Invoke “Create set of Thumbprints for request” on page 118 with
the following input:

brand trans .brand

bin trans .pBIN

11 Set authUsesBatch to FALSE. If authInfo .captureNow is FALSE, continue
with Step 14.

12 If batch processing is used and the Merchant assigns BatchID :

• Set authUsesBatch to TRUE.
• Invoke “Determine batch identification” on page 472 with the following input:

brand trans .brand

pBIN trans .pBIN

rrpid authRRTags.rrpid

Designate the value of batchID returned as batchID and the value of
sequenceNum returned as sequenceNum .

13 Construct SaleDetail:

batchID batchID

batchSequenceNum sequenceNum

Populate other components of SaleDetail based on the type of transaction and
according to brand policy.

14 Construct AuthReqData:

authReqItem the result of Step 9

mThumbs the result of Step 10

captureNow authInfo .captureNow

saleDetail the result of Step 13

Note: In some situations, the Acquirer may not be able to perform combined
authorization and capture even if CaptureNow is TRUE. When this happens, a
“ captureNotSupported” AuthCode will indicate authorization only; the Merchant
may subsequently issue a CapReq message to capture the payment.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 504 as of January 2, 2000

Merchant Generates AuthReq, continued

Create AuthReq (continued)

Step Action

15 Invoke “Compose EncB” on page 198 with the following input:

s the Merchant’s signature certificate

r cert-PE

t the result of Step 14

b trans .pi

type-t id-set-content-AuthReqTBE

type-s id-set-content-AuthReqTBS

type-b id-set-content-PI

certs the new Merchant key encryption certificate
for trans .brandID , if received since the last
time a message was sent to this Payment
Gateway

16 Store in the message database:

AuthReqData the result of Step 14

17 Construct PerAuth:

authDate authRRTags.date

authReqData the result of Step 14

authRRPID authRRTags.rrpid

captureNow authInfo .captureNow

authUsesBatch authUsesBatch

pi trans .pi

pResPayload completionCode orderReceived

18 Store in the transaction database:

perAuth the result of Step 17

pi NULL

 Note: The perAuth record stored in this step is a new record; it does not replace
the record of any prior authorization.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 505

Merchant Generates AuthReq, continued

Create AuthReq (continued)

Step Action

19 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder the Payment Gateway

msg the result of Step 15

ext any message extension(s) required to support
additional business functions (optional)

rrpid authRRTags.rrpid

lid-C trans .transIDs. lid-C

lid-M trans .transIDs. lid-M

xID trans .transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 506 as of January 2, 2000

Merchant Generates AuthReq, continued

AuthReq data

AuthReq EncB(M, P, AuthReqData, PI)
AuthReqData {AuthReqItem, [MThumbs], CaptureNow, [SaleDetail]}
PI See page 372.

AuthReqItem {AuthTags, [CheckDigests], AuthReqPayload}
MThumbs Thumbprints of certificates, CRLs, and Brand CRL Identifiers

currently held in Merchant’s cache.

CaptureNow Boolean indicating that capture should be performed if authorization
is approved.

SaleDetail See page 383.

AuthTags {AuthRRTags, TransIDs, [AuthRetNum]}
CheckDigests {HOIData, HOD2}

Used by Payment Gateway to authenticate PI. Omit if PI is an
AuthToken .

AuthReqPayload See page 507.

AuthRRTags RRTags, see page 395.

Note: RRPID is needed because there may be more than one
authorization cycle per PReq.

TransIDs copied from corresponding OIData; see page 436.

AuthRetNum Identification of the authorization request used within the financial
network.

HOIData DD(OIData)

See page 436 for the definition of OIData.

An independent hash computed by Merchant. Payment Gateway
compares with Cardholder-produced copy in PI to verify linkage from
PI to OIData.

HOD2 DD(HODInput)

See “OIData” on page 436 for definition of HODInput .

Independent computation by Merchant. Payment Gateway compares
to Cardholder-produced copy in PI to verify out-of-band receipt by
Merchant of relevant data.

Table 46: AuthReq Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 507

Merchant Generates AuthReq, continued

AuthReqPayload data

AuthReqPayload {SubsequentAuthInd, AuthReqAmt, [AVSData],
[SpecialProcessing], [CardSuspect],
RequestCardTypeInd, [InstallRecurData],
[MarketSpecAuthData], MerchData, [ARqExtensions]}

SubsequentAuthInd Boolean indicating Merchant requests an additional
authorization because of a split shipment.

AuthReqAmt May differ from PurchAmt ; Acquirer policy may place
limitations on the permissible difference.

AVSData {[StreetAddress], Location}

Cardholder billing address; contents are received from
Cardholder using an out-of-band mechanism.

See page 394 for definition of Location .

SpecialProcessing Enumerated field indicating the type of special processing
requested. See page 508.

CardSuspect Enumerated code indicating that Merchant is suspicious of the
Cardholder and the reason for the suspicion. See page 508.

RequestCardTypeInd Indicates that the type of card should be returned in CardType
in the response; if the information is not available, the value
unavailable(0) is returned.

InstallRecurData See page 377.

MarketSpecAuthData < MarketAutoAuth, MarketHotelAuth,
MarketTransportAuth >

Market-specific authorization data.

MerchData { [MerchCatCode], [MerchGroup]}
ARqExtensions The data in an extension to the authorization request must shall

be financial and should be related to the processing of an
authorization (or subsequent capture) by the Payment Gateway,
the financial network, or the Issuer.

StreetAddress The street address of the cardholder.

MarketAutoAuth {Duration}
MarketHotelAuth {Duration, [Prestige]}
MarketTransportAuth {}

There is currently no authorization data for this market segment.

Table 47: AuthReqPayload Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 508 as of January 2, 2000

Merchant Generates AuthReq, continued

AuthReqPayload data (continued)

MerchCatCode Four-byte code (defined in ANSI X9.10) describing merchant’s
type of business, product, or service.

MerchGroup Enumerated code identifying the general category of the
merchant.

Duration The anticipated duration of the transaction (in days). This
information assists the Issuer by indicating how much time is
likely to elapse between the authorization and the capture.

Prestige Enumerated type of prestigious property; the meaning of the
various levels are defined by the payment card brand.

Table 47: AuthReqPayload Data, continued

SpecialProcessing The following values are defined for SpecialProcessing . The processing defined for
each value is brand-specific.

directMarketing The Merchant requests the transaction be processed with direct
marketing rules.

preferredCustomer The Merchant requests the transaction be processed with
preferred customer rules.

Table 48: Enumerated Values for SpecialProcessing

CardSuspect The following values are defined for CardSuspect .

unspecifiedReason Either the Merchant does not differentiate reasons for suspicion,
or the specific reason does not appear in the list.

Table 49: Enumerated Values for CardSuspect

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 509

Payment Gateway Processes AuthReq

Process
AuthReq

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of EnvelopedData

ext any message extension(s) required to
support additional business functions
(optional)

 This procedure uses the following internal variables:

authCode an instance of AuthCode

authAmt an instance of CurrencyAmt

authRetNum an instance of AuthRetNum

paySysID an instance of PaySysID

transExists an instance of BOOLEAN

needCapture an instance of BOOLEAN

usesBatch an instance of BOOLEAN

2 Invoke “Verify EncB” on page 199 with the following input:

d msg

type-t id-set-content-AuthReqTBE

type-s id-set-content-AuthReqTBS

type-b id-set-content-PI

 Designate:

• the value of t returned as req , and
• the value of b returned as pi .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 510 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

3 Validate the following contents of req :

authReqItem.authTags.
authRRTags.rrTags.rrpid

hdr. rrpid

authReqItem.authTags.
transIDs.lid-C

hdr. messageIDs.lid-C

authReqItem.authTags.
transIDs.lid-M

hdr .messageIDs.lid-M

authReqItem.authTags.
transIDs.xID

hdr .messageIDs.xID

 If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

4 Verify that req.auth ReqItem.auth Tags.transIDs .language is a valid RFC
1766 language code. If not, invoke “Create Error Message” on page 135 with the
following input:

errorCode unsupportedLanguage

5 Set usesBatch to FALSE.

If req.captureNow is TRUE:

• If the Payment Gateway does not support capture processing, set authCode to
captureNotSupported and continue with Step 20.

• Set needCapture to TRUE.

Otherwise, set needCapture to FALSE.

6 If pi is in the list of:

used PIs • Set authCode to piPreviouslyUsed

• Continue with Step 20.

invalid AuthToken s • Set authCode to piPreviouslyUsed.

• Continue with Step 20.

conditional PIs • Delete the PI from that list.

• If an authToken with the same authRRPID
appears in the list of conditional authToken s,
move the AuthToken to the list of invalid
authToken s.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 511

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

7 From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer , and

• serialNumber matches
msg .signerInfos[1].issuerAndSerialNumber.serialNumber .

Designate the certificate as cert-MS .

8 Invoke “Process PI” on page 516 with the following input:

pi pi

cert-MS cert-MS

checkDigests req .authReqItem.checkDigests

installRecurData req .authReqItem.authReqPayload.
installRecurData

transIDs req .authReqItem.authTags.transIDs

Designate:

• the value of authCode returned as authCode ,
• the value of acqCardCodeMsg returned as acqCardCodeMsg ,

• the value of trans returned as trans ,

• the value of trans Exists returned as trans Exists , and

• the value of authTokenData returned as authTokenData .

If authCode is not approved, continue with Step 20.

9 If req.captureNow is FALSE, continue with Step 11.

Otherwise:

• Validate components of req.saleDetail (other than batchID and
batchSequenceNum) according to brand policy. If errors occur, set authCode
and capCode to appropriate values and continue with Step 20.

• If batch processing is not used, continue with Step 11.

• Set usesBatch to TRUE.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 512 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

10 Invoke “Process batch identification” on page 487 with the following input:

brand trans .brand

pBIN cert -MS.merchantData.merAcquirer BIN

rrpid req.authReqItem.authTags.
authRRTags.rrTags.rrpid

mBatchID req.saleDetail.batchID

If the value of capCode returned is not success:

• Set authCode to captureFailure.
• Designate the value of capCode returned as capCode .
• Continue with Step 20.

Otherwise, designate:

• the value of batchID returned as batchID , and

• the value of batchData returned as batchData .

Note: In the case of concurrent authorization and capture processing, the batch
identification is used for reporting and accounting purposes only.

11 Process authorization (either through the existing payment card financial networks
or locally by the Payment Gateway if allowed by payment brand rules).

If req.captureNow is TRUE, the request should be formatted to request
concurrent authorization and capture processing provided that the acquirer and
payment card financial network support such processing. The decision about
concurrent processing may be affected by whether the merchant specified
req.saleDetail.batchID .

Set authCode , authRetNum , and paySysID and format an instance of
ResponseData based on the results of the authorization process.

If concurrent authorization and capture was attempted:
• If authCode is success, set capCode based on the results of the capture

process.
• set needCapture to FALSE.

Otherwise, if req.captureNow is TRUE and capture cannot be executed, set
authCode to captureNotSupported to indicate successful authorization and
continue with Step 20.

12 If authCode is approved:

• Set authAmt to the amount authorized in Step 11.
• Otherwise, set authAmt to req.authReqItem.authReqPayload.

authReqAmt .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 513

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

13 If authCode is not approved:

• If usesBatch is TRUE, remove req.authReqItem. authTags.
authRRTags. rrTags. rrpid from batchData .outstandingRequests .

 Note: This processing intentionally avoids updating transactionDetailS eq in
batchData .

• Set needCapture to FALSE.

• If authCode is not callIssuer, continue with Step 20.

14 If needCapture is TRUE and batches are not accumulated locally:

• Process capture via existing payment card financial network.
• Set capCode based on the results of the capture process.
• Set needCapture to FALSE.

15 Construct the following contents of PerAuth:

authAmt authAmt

authCode authCode

authReqItem req.authReqItem (if it is Payment Gateway
policy to store this data)

paySysID from the result of Step 11 (if provided)

authRetNum authRetNum

authRRPID req.authReqItem. authTags.
authRRTags. rrTags. rrpid

responseData from the result of Step 11 (if provided)

batchID batchID (if set)

batchSequenceNum batchSequenceNum (if set)

capCode capCode (if set)

captureNow req.captureNow

responseData from the result of Step 11

saleDetail req.saleDetail

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 514 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

16 If needCapture is TRUE, invoke “Update batch (add item)” on page 493 with
the following input:

trans trans

perAuth the result of Step 15

rrpid req.authReqItem.authTags.
authRRTags.rrTags.rrpid

batchData batchData

sequenceNum req.saleDetail. batchSequenceNum

transAmt authAmt

transType AuthReq

payload req.authReqItem.authReqPayload

Designate the value of capCode returned as capCode and the value of
sequenceNum returned as sequenceNum .

17 If paySysID is defined:

• Update the following contents of trans .transIDs :

paySysID from the result of Step 11 (if provided)

• Store in the result in the transaction database.

18 Store in the transaction database:

perAuth the result of Step 15

19 If authCode is approved or if brand or acquirer policy requires the transaction
record to be retained, set transExists to TRUE.

20 Store in the message database:

AuthReqData req

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 515

Payment Gateway Processes AuthReq, continued

Process AuthReq (continued)

Step Action

21 Optional: If acqCardCodeMsg has not been defined, construct an instance of
AcqCardCodeMsg to provide additional information about the status of the
transaction to the cardholder:

acqCardText optional: a textual message to be displayed to
Cardholder (using
req.authReqItem.authTags.transIDs.
language if available)

acqCardURL optional: the URL that references a message
to be displayed to Cardholder

acqCardPhone optional: a phone number to be presented to
Cardholder

22 Invoke “Create AuthRes ” on page 526 with the following input:

trans trans

perAuth the result of Step 15

req req

pi pi

cert-MS cert-MS

acqCardCodeMsg from the result of Step 8 or Step 21

batchData batchData

transExists transExists

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 516 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process PI

Step Action

1 Receive as input:

pi an instance of PI

cert-MS an instance of Certificate

checkDigests an instance of CheckDigests (optional)

installRecurData an instance of InstallRecurData (optional)

transIDs an instance of TransIDs (optional)

reversalFlag an instance of BOOLEAN (default FALSE)

Note: If reversalFlag is FALSE, installRecurData , and transIDs are
required; in addition, checkDigests is required if pi is not an AuthToken .

This procedure uses the following internal variables:

authCode an instance of AuthCode

transExists an instance of BOOLEAN

2 Set authCode to approved.

3 Examine the tag at the beginning of pi .

• If the tag is [0], continue with Step 4.
• If the tag is [1], continue with Step 12.
• Otherwise, continue with Step 33.

Processing steps for unsigned pi

4 Invoke “Verify EXH” on page 180 with the following input:

d pi (without the leading tag [0])

type-t id-set-content-PIUnsignedTBE

type-p id-set-content-PANToken

Designate:

• the value of t returned as pi-oiLink,
• the value of p returned as panToken , and
• pi-oiLink.t1 as piHead .

5 If reversalFlag is TRUE, continue with Step 10.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 517

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

6 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• serialNumber matches
pi .piUnsigned.recipientInfos[1].issuerAndSerialNumber .

Designate the certificate as cert-PE . If not found, abort processing.

7 If cert-PE .cardCertRequired is TRUE, set authCode to signatureRequired
and continue with Step 42.

8 Invoke “Compare BrandID s” on page 119 with the following input:

hier TRUE

brand1 cert-PE .subject.organizationName

brand2 cert-MS .subject.organizationName

If the values do not match, set authCode to cardMerchBrandMismatch and
continue with Step 42.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 518 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

9 Validate the following contents of panToken :

pan If required by brand policy, verify using the
check digit algorithm described in Appendix N.

cardExpiry If required by acquirer or brand policy, not
before today’s date

If errors occur during validation:

• Set authCode based on the field that failed:

pan invalidPAN

cardExpiry expiredCard

• Continue with Step 42.

10 Store in the transaction database:

backKeyData piHead .acqBackKeyData

brand pi-oiLink .oiData.brandID without Product

brandID pi-oiLink .oiData.brandID

cardExpiry panToken .cardExpiry

pan panToken .pan

purchAmt piHead .inputs.purchAmt

Designate the resulting transaction record as trans . Set transExists to FALSE.

11 Continue with Step 28.

Processing steps for signed pi

12 Invoke “Verify EXL” on page 176 with the following input:

d pi (without the leading tag [1])

type-t id-set-content-PIDualSignedTBE

type-p id-set-content-PANData

Designate:

• the value of t returned as pi-oiLink ,
• the result of p returned as panData , and
• pi-oiLink.t1 as piHead .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 519

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

13 If reversalFlag is TRUE, continue with Step 27.

14 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• serialNumber matches
pi .piDualSigned.recipientInfos[1].issuerAndSerialNumber .

Designate the certificate as cert-PE . If not found, abort processing.

15 From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• serialNumber matches
pi .piDualSigned.signerInfos[1].issuerAndSerialNumber .

Designate the certificate as cert-CS . If not found, abort processing.

16 Construct PIData:

piHead piHead

panData panData

17 Invoke “Compose DetachedDigest” on page 143 with the following input:

t the result of Step 16

type id-set-content-PIData

18 Construct PI-TBS:

hPIData the result of Step 17

hOIData pi-oiLink .t2

19 Invoke “Verify SignedData (SO)” on page 157 with the following input:

t the result of Step 18

d pi .piDualSigned.piSignature

type id-set-content-PI-TBS

20 Invoke “Compare BrandID s” on page 119 with the following input:

hier TRUE

brand1 cert-PE .subject.organizationName

brand2 cert-CS .subject.organizationName

If the values do not match, set authCode to cardMerchBrandMismatch and
continue with Step 42.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 520 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

21 Invoke “Compare BrandID s” on page 119 with the following input:

hier TRUE

brand1 cert-MS .subject.organizationName

brand2 cert-CS .subject.organizationName

If the values do not match, set authCode to cardMerchBrandMismatch and
continue with Step 42.

22 Invoke “Compare BrandID s” on page 119 with the following input:

hier TRUE

brand1 cert-PE .subject.organizationName

brand2 cert-MS .subject.organizationName

If the values do not match, set authCode to cardMerchBrandMismatch and
continue with Step 42.

23 Validate the following contents of panData :

pan If required by brand policy, verify using the
check digit algorithm described in Appendix N.

cardExpiry If required by acquirer or brand policy, not
before today’s date

If errors occur during validation, set authCode based on the field that failed and
continue with Step 42.

pan invalidPAN

cardExpiry expiredCard

24 Construct HMACPanData:

pan panData. pan

cardExpiry panData .cardExpiry

25 Invoke “Keyed-Hash” on page 142 with the following input:

t the result of Step 24

k panData .panSecret

Designate value returned as cardholderID .

26 Validate cardholderID :

cardholderID cert-CS .commonName

If errors occur during validation, send a signatureFailure Error message set
authCode to signatureFailure and continue with Step 42.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 521

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

27 Store in the transaction database:

backKeyData piHead .acqBackKeyData

brand pi-oiLink .oiData.brandID without Product

brandID pi-oiLink .oiData.brandID

cardExpiry panData .cardExpiry

pan panData .pan

purchAmt piHead .inputs.purchAmt

transStain piHead .transStain (optional)

Designate the resulting transaction record as trans . Set transExists to FALSE.

Common processing steps for unsigned and signed pi

28 If reversalFlag is TRUE, continue with Step 31.

29 Validate the following contents of checkDigests :

hOIData pi-oiLink .t2

hod2 piHead .inputs.hod

If errors occur during validation, set authCode based on the field that failed and
continue with Step 42.

HOIData piAuthMismatch

hod2 return a “ HODMismatch” Error message
piAuthMismatch

30 Validate the following contents of piHead :

transIDs.xID transIDs .xID

transIDs.lid-C transIDs .lid-C

transIDs.lid-M transIDs .lid-M

merchantID cert-MS .merchantData.merID

installRecurData installRecurData

transIDs.pReqDate transIDs .pReqDate

If errors occur during validation, set authCode based on the field that failed and
continue with Step 42.

installRecurData installRecurMismatch

all other fields piAuthMismatch

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 522 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

31 Store in the transaction database:

installRecurData piHead .installRecurData

merchantID piHead .merchantID

transIDs piHead .transIDs

32 Continue with Step 40.

Processing steps for authToken

33 Invoke “Verify EncX” on page 195 with the following input:

d pi (without the leading tag [2])

type-t id-set-content-AuthTokenTBE

type-s id-set-content-AuthTokenTBS

type-p id-set-content-PANToken

Note: As used here type-p will never appear in any message; it is only used to
correctly set BC in the OAEP block.

Designate:

• the value of t returned as authTokenData , and
• the value of p returned as panToken .

34 If reversalFlag is TRUE, continue with Step 39.

35 Verify that the entity identified by pi .authToken.signerInfos[1].
IssuerAndSerialNumber is the payment gateway. If not, set authCode to
piAuthMismatch and continue with Step 42.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 523

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

36 Validate the following contents of panToken :

cardExpiry if required by acquirer or brand policy, not
before today’s date

If errors occur during validation, set authCode to expiredCard and continue with
Step 42.

37 Validate the following contents of authTokenData :

xID transIDs .xID

lid-C transIDs .lid-C

lid-M transIDs .lid-M

merchantID cert-MS .merchantData.merID

If errors occur during validation, set authCode to piAuthMismatch and continue
with Step 42.

38 If authTokenData .installRecurData.recurring is not present, continue with
Step 39.

Otherwise, validate the following contents of authTokenData.
installRecurData :

recurringExpiry greater than or equal to the current date

recurringFrequency less than or equal to the number of days between
authTokenData .prevAuthDateTime and the
current date

If errors occur during validation, set authCode based on the field that failed and
continue with Step 42.

recurringExpiry recurringExpired

recurringFrequency recurringTooSoon

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 524 as of January 2, 2000

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

39 From the transaction database, retrieve the record for transIDs .xID. If found,
designate it as trans .

Otherwise,
• Store in the transaction database:

backKeyData authTokenData .acqBackKeyData

brand cert-MS .subject.organizationName
without Product

brandID cert-MS .subject.organizationNa me

cardExpiry panToken .cardExpiry

installRecurData authTokenData .installRecurData

merchantID authTokenData .merchantID

pan panToken .pan

purchAmt authTokenData .purchAmt

transIDs authTokenData .transIDs
• Designate the resulting transaction record as trans .

Common processing steps

40 If reversalFlag is TRUE, continue with Step 43.

41 Execute additional procedures for installment payments as defined by brand
policy.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 525

Payment Gateway Processes AuthReq, continued

Process PI (continued)

Step Action

42 Optional: If an error occurred during this processing, construct AcqCardCodeMsg
to provide additional information about the failure to the cardholder:

acqCardText optional: a textual message to be displayed to
Cardholder (using transIDs .language if
available)

acqCardURL optional: the URL that references a message
to be displayed to Cardholder

acqCardPhone optional: a phone number to be presented to
Cardholder

43 Return:

authCode authCode

acqCardCodeMsg the result of Step 42

trans trans

transExists transExists

authTokenData authTokenData (if defined)

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 526 as of January 2, 2000

Payment Gateway Generates AuthRes

Create AuthRes

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

req an instance of AuthReqData

pi an instance of PI

cert-MS an instance of Certificate

acqCardCodeMsg an instance of AcqCardCodeMsg (optional)

batchData an instance of BatchData

transExists an instance of BOOLEAN

This procedures uses the following internal variables:

capTokenSent an instance of BOOLEAN

2 If perAuth .authAmt is specified in a currency other than the one used by the
cardholder and if currency conversion data is available (for example, because the
payment system returned it), construct CurrConv:

currConvRate either:

• the current conversion rate between
perAuth .authAmt currency and
Cardholder’s requested currency, received
from the payment system, or

• if the payment system returns the amount in
the billing currency, amountBillingCurrency /
perAuth .authAmt

cardCurr the Cardholder’s billing currency, received
from the payment system

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 527

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

3 Construct AuthHeader:

authAmt perAuth .authAmt

authCode perAuth .authCode

responseData perAuth .responseData

batchStatus optional: if perAuth .capCode is success
and perAuth .batchID is defined,
batchData .batchStatus

currConv the result of Step 2

4 If perAuth .capCode is specified, construct CapResPayload:

capCode perAuth .capCode

capAmt perAuth .authAmt

batchID perAuth .batchID (if perAuth .capCode
is success)

batchSequenceNum perAuth .batchSequenceNum (if
perAuth .capCode is success)

cRsPayExtensions any message extension(s) required to support
additional business functions (optional)

5 Construct AuthResPayload:

authHeader the result of Step 3

capResPayload the result of Step 4

aRsExtensions any message extension(s) required to support
additional business functions (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 528 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

6 If perAuth .authCode is approved, add to the list of used PIs:

pi pi

Include also necessary identifying data, as discussed in “Payment Gateway PI
records” on page 466.

7 If perAuth .authCode is callIssuer, add to the list of conditional PIs:

pi pi

Include also necessary identifying data, as discussed in “Payment Gateway PI
records” on page 466.

8 Optional: If perAuth .authCode is approved or callIssuer and
perAuth .capCode is not defined, set capTokenSent to TRUE and invoke
“Create CapToken ” on page 533 with the following input:

trans trans

perAuth perAuth

 Designate:

• the value of capToken returned as capToken , and
• the value of tokenOpaque returned as tokenOpaque .

9 If perAuth .authCode is approved or callIssuer and one of the following
conditions exists:

• req.authReqItem.authReqPayload.subsequentAuthInd is TRUE

• trans .installRecurData.installTotalTrans exists and fewer than
trans .installRecurData.installTotalTrans transactions have been
processed

• trans .installRecurData.recurring exists and the current date is greater than
or equal to recurringFrequency days before the earlier of recurringExpiry
and trans .cardExpiry

then invoke “Create AuthToken ” on page 535 with the following input:

trans trans

oldTokenData authTokenData

authAmt perAuth .authAmt

10 If perAuth .authCode is callIssuer and if an AuthToken was created in Step 9,
add to the list of conditional authToken s:

authToken the result of Step 9

Include also necessary identifying data, as discussed in “Payment Gateway PI
records” on page 466.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 529

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

11 If trans .backKeyData does not exist or if no message is to be returned to the
Cardholder (tunneled through the Merchant), continue with Step 14.

If acqCardCodeMsg is specified, continue with Step 13.

Otherwise, construct an instance of AcqCardMsgData:

acqCardText optional: a textual message to be displayed to
Cardholder (using
trans .transIDs.language if available)

acqCardURL optional: the URL that references a message
to be displayed to Cardholder

acqCardPhone optional: a phone number to be presented to
Cardholder

12 Construct acqCardCodeMsg:

acqCardCode a value from Table 9 on page 379

acqCardMsgData the result of Step 11

13 Invoke “Compose EncK” on page 190 with the following input:

k trans .backKeyData.acqBackKey

s the Payment Gateway’s signature certificate

t the result of Step 12

type-t id-set-content-AcqCardCodeMsgTBE

type-s id-set-content-AcqCardCodeMsg

aid trans .backKeyData.acqBackAlg

14 Construct AuthResBaggage:

capToken capToken

acqCardMsg the result of Step 13

authToken the result of Step 9

15 Copy req.authReqItem.authTags to an instance of AuthTags and update the
following components:

transIDs.paySysID perAuth .paySysID

authRetNum perAuth .authRetNum

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 530 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

16 Retrieve the current Payment Gateway key encryption certificate for the brand
identified by trans .brandID and trans .pBIN . If not found, abort processing.

 If req.mThumbs is absent or if req.mThumbs is present and does not include
the thumbprint of the certificate, designate the certificate as cert-PE and its
Thumbprint as peThumb ; otherwise, set cert-PE and peThumb to NULL.

17 Retrieve the BrandCRLIdentifier for the brand identified by trans .brand and
designate it as bci ; retrieve its Thumbprint and designate it as bciThumb . If not
found, abort processing.

 If req.mThumbs is present and includes bciThumb , set bci to NULL.

18 Construct AuthResData:

authTags the result of Step 15

brandCRLIdentifer bci

peThumb GKThumb peThumb

authResPayload the result of Step 5

19 Invoke “Retrieve Merchant key encryption certificate” on page 537 with the
following input:

brandID trans .brandID

merchantID trans .merchantID

20 If perAuth .authCode is approved or callIssuer and if
cert-MS .merchantData.merAuthFlag is TRUE and if Acquirer policy allows
PANToken to be returned for this transaction, continue with Step 23.

21 Invoke “Compose EncB” on page 198 with the following input:

s the Payment Gateway’s signature certificate

r the result of Step 19

t the result of Step 18

b the result of Step 14

type-t id-set-content-AuthResTBE

type-s id-set-content-AuthResTBS

type-b id-set-content-AuthResBaggage

certs cert-PE

22 Append the result of Step 21 to the tag [0], then continue with Step 26.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 531

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

23 Construct the following contents of PANToken:

pan trans .pan

cardExpiry trans .cardExpiry

24 Invoke “Compose EncBX” on page 203 with the following input:

s the Payment Gateway’s signature certificate

r the result of Step 19

t the result of Step 18

b the result of Step 14

p the result of Step 23

type-t id-set-content-AuthResTBEX

type-s id-set-content-AuthResTBSX

type-p id-set-content-panToken

type-b id-set-content-AuthResBaggage

certs cert-PE

25 Append the result of Step 24 to the tag [1].

26 Store in the message database:

authResData the result of Step 18

authResBaggage the result of Step 14

27 If transExists is FALSE, delete the transaction record and continue with
Step 30.

28 Construct the following contents of PerAuth:

authResPayload the result of Step 5 (if it is Payment Gateway
policy to store this data)

tokenOpaque tokenOpaque

29 Store in the transaction database:

perAuth the result of Step 28

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 532 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

Create AuthRes (continued)

Step Action

30 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder the Merchant

msg the result of Step 22 or Step 25

ext any message extension(s) required to support additional
business functions (optional)

rrpid req.authReqItem. authTags. authRRTags.
rrTags. rrpid

lid-C req.authReqItem. authTags. transIDs. lid-C

lid-M req.authReqItem. authTags. transIDs. lid-M

xID req.authReqItem. authTags. transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 533

Payment Gateway Generates AuthRes, continued

Create
CapToken

This version of SET supports encryption only to the same Payment Gateway; that is, only
the Payment Gateway that created a given CapToken will be able to read it.

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

2 Construct CapTokenData:

authRRPID perAuth. authRRPID

authAmt perAuth. authAmt

tokenOpaque data from trans that will be required to process a
capture or credit request (included in the event that
the transaction record is purged prior to receipt of
the request)

3 If panToken is to be included, continue with Step 5.

Otherwise, invoke “Compose Enc” on page 186 with the following input:

s the Payment Gateway’s signature certificate

r the Payment Gateway’s key encryption certificate

t the result of Step 2

type-t id-set-content-CapTokenTBE

type-s id-set-content-CapTokenData

4 Append the result of Step 3 to the tag [1]. Continue with Step 8.

5 Construct the following contents of PANToken:

pan trans .pan

cardExpiry trans .cardExpiry

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 534 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

Create CapToken (continued)

Step Action

6 Invoke “Compose EncX” on page 194 with the following input:

s the Payment Gateway’s signature certificate

r the Payment Gateway’s key encryption certificate

t the result of Step 2

p the result of Step 5

type-t id-set-content-CapTokenTBEX

type-s id-set-content-CapTokenTBS

type-p id-set-content-PANToken

Note: As used here type-p will never appear in any message; it is only used to
correctly set BC in the OAEP block.

7 Append the result of Step 6 to the tag [0]. Continue with Step 8.

8 Return the following:

capToken the result of Step 4 or Step 7

tokenOpaque capTokenData.tokenOpaque

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 535

Payment Gateway Generates AuthRes, continued

Create AuthToken

Step Action

1 Receive as input:

trans the transaction record

oldTokenData an instance of AuthTokenData (optional)

authAmt an instance of CurrencyAmount

priorAmt an instance of CurrencyAmount (optional)

2 Construct the following contents of AuthTokenData:

transIDs trans .transIDs

purchAmt trans .purchAmt

merchantID trans .merchantID

acqBackKeyData trans .backKeyData

installRecurData trans .installRecurData

authTokenOpaque data from trans that will be required to process a
subsequent authorization request (included in the
event that the transaction record is purged prior to
receipt of the request)

Designate the result as authTokenData .

3 If oldTokenData is not specified, continue with Step 4. Otherwise:

• if priorAmt is specified, continue with Step 6,
• otherwise, continue with Step 5.

Creating first AuthToken

4 Update the following components in authTokenData :

recurringCount 1

prevAuthDateTime the current date and time

totalAuthAmount authAmt

Continue with Step 7.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 536 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

Create AuthToken (continued)

Step Action

Creating subsequent AuthToken

5 Update the following components in authTokenData :

recurringCount oldTokenData .recurringCount plus 1

prevAuthDateTime the current date and time

totalAuthAmount oldTokenData .totalAuthAmount plus
authAmt

Continue with Step 7.

Creating AuthToken as part of processing a partial reversal

Note: A full reversal does not generate a new AuthToken; instead, it restores the
previous PI.

6 Update the following components in authTokenData :

recurringCount oldTokenData .recurringCount

prevAuthDateTime oldTokenData .prevAuthDateTime

totalAuthAmount oldTokenData .totalAuthAmt decreased by
priorAmt then increased by authAmt

Common processing steps

7 Construct the following contents of PANToken:

pan trans .pan

cardExpiry trans .cardExpiry

8 Invoke “Compose EncX” on page 194 with the following input:

s the Payment Gateway’s key-encryption signature
certificate

r the Payment Gateway’s key encryption certificate

t authTokenData

p the result of Step 7

type-t id-set-content-AuthTokenTBE

type-s id-set-content-AuthTokenTBS

type-p id-set-content-PANToken

9 Return the following:

authToken the result of Step 8

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 537

Payment Gateway Generates AuthRes, continued

Retrieve
Merchant key
encryption
certificate

Step Action

1 Receive as input:

brandID an instance of BrandID

merchantID an instance of MerchantID

2 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment,

• merchantData.merID matches merchantID , and

• subject.organizationName matches brand ID (as indicated by the result of
“Compare BrandIDs” on page 119).

If found, designate it as cert-ME and continue with Step 5.

3 From the untrusted cache, retrieve the certificate that matches the criteria listed in
Step 2.

If not found, invoke “Create Error Message” on page 135 with the following
input:

errorCode missingCertificateCRLorBCI

4 Designate the certificate retrieved in Step 3 as cert-ME .

Invoke “Verify certificate” on page 129 with the following input:

cert cert-ME

5 Return the following:

cert-ME cert -ME

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 538 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

AuthRes data

AuthRes < EncB(P, M, AuthResData, AuthResBaggage),
 EncBX(P, M, AuthResData, AuthResBaggage,
PANToken) >

AuthResData {AuthTags, [BrandCRLIdentifier], [PEThumb],
AuthResPayload}

AuthResBaggage {[CapToken], [AcqCardMsg], [AuthToken]}
PANToken See page 382. Sent if Merchant certificate indicates Merchant is

entitled to the information.

AuthTags Copied from corresponding AuthReq ; TransIDs and
AuthRetNum may be updated with current information.

BrandCRLIdentifier List of current CRLs for all CAs under a Brand CA. See page 347
in Part II.

PEThumb Thumbprint of Payment Gateway certificate provided if
AuthReq.MThumbs indicates Merchant needs one.

AuthResPayload See page 539.

CapToken See page 380.

AcqCardMsg If Cardholder included AcqBackKeyData in PIHead, the
Payment Gateway may send this field to the Merchant containing
a message (encrypted using the key data) for the Cardholder. The
Merchant is required to copy AcqCardMsg to any subsequent
PRes or InqRes sent to the Cardholder. See page 379.

AuthToken Merchant uses as the PI in a subsequent AuthReq . See
page 378.

Table 50: AuthRes Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 539

Payment Gateway Generates AuthRes, continued

AuthResPayload
data

AuthResPayload {AuthHeader, [CapResPayload], [ARsExtensions]}
AuthHeader {AuthAmt, AuthCode, ResponseData, [BatchStatus],

[CurrConv]}
CapResPayload See page 619.

Returned if CaptureNow had a value of TRUE in AuthReq .

ARsExtensions The data in an extension to the authorization response shall must be
financial and should be important for the processing of the
authorization response or a subsequent authorization reversal or
capture request by the Payment Gateway, the financial network, or
the Issuer.

AuthAmt Copied from AuthReqPayload.AuthReqAmt .

AuthCode Enumerated code indicating outcome of payment authorization
processing. See page 541.

ResponseData {[AuthValCodes], [RespReason], [CardType], [AVSResult],
[LogRefID]}

BatchStatus See page 396.

CurrConv {CurrConvRate, CardCurr}
AuthValCodes {[ApprovalCode], [AuthCharInd], [ValidationCode],

[MarketSpecDataID]}
RespReason Enumerated code that indicates authorization service entity and (if

appropriate) reason for decline. See page 543.

CardType Enumerated code indicating the type of card used for the transaction.
See page 544.

AVSResult Enumerated Address Verification Service response code. See
page 545.

LogRefID Alphanumeric data assigned to the authorization transaction (used
for matching to reversals).

Table 51: AuthResPayload Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 540 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

AuthResPayload data (continued)

CurrConvRate Currency Conversion Rate: value with which to multiply
AuthReqAmt to provide an amount in the Cardholder’s currency.

CardCurr ISO 4217 currency code of Cardholder.

ApprovalCode Approval code assigned to the transaction by the Issuer.

AuthCharInd Enumerated value that indicates the conditions present when the
authorization was performed. See page 545.

ValidationCode Four-byte alphanumeric code calculated to ensure that required
fields in the authorization messages are also present in their
respective clearing messages.

MarketSpecDataID Enumerated code that identifies the type of market-specific data
supplied on the authorization (as determined by the financial
network). See page 545.

Table 51: AuthResPayload Data, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 541

Payment Gateway Generates AuthRes, continued

AuthCode The following values are defined for AuthCode .

approved The authorization request was approved.

unspecifiedFailure The authorization request could not be processed for a
reason that does not appear elsewhere in this list.

declined The authorization request was declined.

noReply The Issuer did not respond to the authorization request.
This value frequently indicates a temporary system outage
in the Issuer’s data processing facility. (Payment Gateway
generated response)

callIssuer The Issuer requests a telephone call from the merchant.

amountError The transaction amount could not be processed by a
non-SET system (Acquirer, financial network, Issuer, etc.).

expiredCard The card has expired.

invalidTransaction The request could not be processed by a non-SET system
(Acquirer, financial network, Issuer, etc.) because the type
of transaction is not allowed.

systemError The request could not be processed by a non-SET system
(Acquirer, financial network, Issuer, etc.) because data in
the request is invalid.

piPreviouslyUsed The Payment Instructions in the authorization request have
been used for a prior authorization request which was
approved and has not been subsequently reversed (Payment
Gateway generated response).

recurringTooSoon The minimum time between authorizations has not elapsed
for a recurring transaction (Payment Gateway generated
response).

recurringExpired The expiration date for a recurring transaction has passed
(Payment Gateway generated response).

piAuthMismatch The data in the PI from the Cardholder does not correspond
with the data in the OD from the Merchant. (Payment
Gateway generated response)

installRecurMismatch InstallRecurData in the PI from the Cardholder does not
correspond with InstallRecurData in the OD from the
Merchant. (Payment Gateway generated response)

captureNotSupported The Payment Gateway does not support capture. (Payment
Gateway generated response)

Table 52: Enumerated Values for AuthCode

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 542 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

AuthCode (continued)

signatureRequired The unsigned PI option is not supported by the Payment
Gateway for this brand. (Payment Gateway generated
response)

cardMerchBrandMismatch The brand in the Cardholder or Merchant signature certificate
does not match the brand of the Payment Gateway encryption
certificate. (Payment Gateway generated response)

Table 52: Enumerated Values for AuthCode, continued

Future values
for AuthCode

The following conditions were identified after the ASN.1 for version 1.0 was completed.
They are currently defined as constants mapping to unspecifiedFailure. In a future version of
the ASN.1, these values will be added to the ENUMERATED AuthCode . Application
developers are encouraged to use these symbolic names in place of unspecifiedFailure.

captureFailure Capture was not attempted as it would have failed as a result
of the supplied batchID and/or batchSequenceNum .

invalidPANInfo Supplied PAN does not conform to check digit algorithm or
card has expired.

signatureFailure The cardholderID recreated by the Payment Gateway from
panData does not match that in the Cardholder certificate.

Table 53: Future Enumerated Values for AuthCode

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 543

Payment Gateway Generates AuthRes, continued

RespReason The following values are defined for RespReason .

issuer The authorization was processed by the Issuer.

standInTimeOut The authorization was processed by the Stand-In Processing
System after it timed out waiting for the Issuer.

standInFloorLimit The authorization was processed by the Stand-In Processing
System because the transaction amount is below the Issuer
limit.

standInSuppressInquiries The authorization was processed by the Stand-In Processing
System because the Issuer had suppressed incoming
authorization traffic.

standInIssuerUnavailable The authorization was processed by the Stand-In Processing
System because no connection to the Issuer was available.

standInIssuerRequest The authorization was processed by the Stand-In Processing
System at the Issuer’s request.

Table 54: Enumerated Values for RespReason

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 544 as of January 2, 2000

Payment Gateway Generates AuthRes, continued

CardType The following values are defined for CardType .

unavailable Unknown card type

classic Brand-specific classic card product

gold Brand-specific gold card product

platinum Brand-specific platinum card product

premier Brand-specific premier card product

debit Brand-specific debit card product

pinBasedDebit Brand-specific PIN-based debit card product

atm Brand-specific ATM card product

electronicOnly Brand-specific electronic-only card product

unspecifiedConsumer Brand-specific unspecified consumer card product

corporateTravel Brand-specific corporate travel card product

purchasing Brand-specific purchasing card product

business Brand-specific business card product

unspecifiedCommercial Brand-specific unspecified commercial card product

privateLabel Brand-specific private label card product

proprietary Brand-specific proprietary card product

Table 55: Enumerated Values for CardType

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 545

Payment Gateway Generates AuthRes, continued

AVSResult The following values are defined for AVSResult .

resultUnavailable AVS service was unavailable.

noMatch Neither address nor postal code matches.

addressMatchOnly Address matches, postal code does not.

postalCodeMatchOnly Postal code matches, address does not.

fullMatch Both address and postal code match.

Table 56: Enumerated Values for AVSResult

AuthCharInd The following values are defined for AuthCharInd .

directMarketing Meet Direct Marketing requirements for card not present

recurringPayment Meet Direct Marketing recurring payment qualification
without address verification request

addressVerification Meet requirements for address verification; verification
requested for card not present: Direct Marketing, Transport
market segments

preferredCustomer Meet requirements for Preferred Customer, card not present:
Hotel/Auto Rental and Transport market segments

incrementalAuth Incremental authorization qualified for Custom Payment
Service, card may or may not be present: Hotel/Auto Rental
market segments

Table 57: Enumerated Values for AuthCharInd

MarketSpecDataID The following values are defined for MarketSpecDataID .

failedEdit Invalid value specified; market-specific processing will not be
performed.

auto Auto Rental market

hotel Hotel/Motel Lodging market

transport Passenger Transport market

Table 58: Enumerated Values for MarketSpecDataID

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 546 as of January 2, 2000

Merchant Processes AuthRes

Process
AuthRes

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of EnvelopedData

ext any message extension(s) required to support
additional business functions (optional)

This procedure uses the following internal variables:

completionCode an instance of CompletionCode

2 Examine the tag at the beginning of msg .

• If the tag is [0], continue with Step 3.

• Otherwise, continue with Step 4.

3 Invoke “Verify EncB” on page 199 with the following input:

d msg (without the leading tag [0])

type-t id-set-content-AuthResTBE

type-s id-set-content-AuthResTBS

type-b id-set-content-AuthResBaggage

 Designate:

• the value of t returned as res , and
• the value of b returned as baggage .

 Continue with Step 5.

4 Invoke “Verify EncBX” on page 205 with the following input.

d msg (without the leading tag [1])

type-t id-set-content-AuthResTBEX

type-s id-set-content-AuthResTBSX

type-p id-set-content-panToken

type-b id-set-content-AuthResBaggage

 Designate:

• the value of t returned as res ,
• the value of b returned as baggage , and
• the value of p returned as panToken .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 547

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

5 Validate the following contents of res :

authTags.rrpid hdr. rrpid

authTags.transIDs.xID hdr .messageIDs.xID

authTags.transIDs.lid-C hdr. messageIDs.lid-C

authTags.transIDs.lid-M hdr .messageIDs.lid-M

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

6 Retrieve the transaction record that is identified by res.authTags.transIDs.xid
and designate it as trans .

If not found, invoke “Create Error Message” on page 135 with the following
input:

errorCode unknownXID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 548 as of January 2, 2000

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

7 Retrieve from trans the perAuth record of the outstanding authorization request
and designate it as perAuth . If not found, abort processing.

8 Validate the following contents of res.authTags :

lid-C trans .lid-C

lid-M trans .lid-M

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode unknownLID

9 If GKThumb res.peThumb is present, verify that it matches the thumbprint of
an existing Payment Gateway key encryption certificate in the trusted cache. If
not:

• From the untrusted cache, retrieve the key encryption certificate whose
Thumbprint matches res .peThumb and designate it as cert-PE . If not found,
abort processing.

• Invoke “Verify certificate” on page 129 with the following input:

cert cert-PE

10 Designate res.authResPayload.authHeader.authCode as authCode .

11 Process the following contents of ResponseData according to brand or Merchant
policy:

• cardType
• avsResult

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 549

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

12 If perAuth .authUsesBatch is FALSE, continue with Step 15.

13 Invoke “Process batch information” on page 476 with the following input:

 propBatchID perAuth .authReqData.saleDetail.
batchID

 propSeqNum perAuth .authReqData.saleDetail.
batchSequenceNum

 batchID res.authResPayload.capResPayload.
batchID

 seqNum res.authResPayload.capResPayload.
batchSequenceNum

 brandID trans .brandID

 pBIN trans .pBIN

 rrpid perAuth .authRRPID

 batchStatusSeq res.authHeader.batchStatus

 transAmt res.authResPayload. authHeader.
authAmt

 transType AuthReq

 Designate the value of batchData returned as batchData .

14 Optional:

• Construct the following contents of TransactionDetail:

 transIDs trans .transIDs

 authRRPID perAuth .authRRPID

 brandID trans .brand

 batchSequenceNum a SEQUENCE with one item
res.authResPayload. capResPayload.
batchSequenceNum

 transactionAmt res.authResPayload. capResPayload.
capAmt

 transactionAmtType credit

 transExtensions any message extension(s) required to
support additional business functions
(optional)

• Append the result to batchData .transactionDetailSeq . Store the updated
batchData in the batch database.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 550 as of January 2, 2000

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

15 Based on authCode , set completionCode :

authCode completionCode

approved • if perAuth .captureNow is TRUE,
capturePerformed

• otherwise authorizationPerformed

callIssuer
noReply
recurringTooSoon

orderReceived

any other value orderRejected

16 If completionCode is authorizationPerformed or capturePerformed, construct
AuthStatus:

authDate perAuth. authDate

authCode authCode

authAmt
authRatio

res.authResPayload.authHeader.authAmt ÷
trans .order.purchAmt

currConv res.authResPayload.authHeader.currConv

17 If completionCode is capturePerformed, construct CapStatus:

capDate perAuth. authDate

capCode res.authResPayload.capResPayload.capCode

capAmt
capRatio

res.authResPayload.capResPayload.capAmt ÷
trans. order.purchAmt

18 Construct Results:

acqCardMsg baggage .acqCardMsg

authStatus the result of Step 16

capStatus the result of Step 17

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 551

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

19 Construct PResPayload:

completionCode the result of Step 15

results the result of Step 18

pRsExtensions any message extension(s) required to support
additional business functions (optional)

20 Copy trans .transIDs to an instance of TransIDs and update the following
contents:

paySysID res.authTags.transIDs.paySysID

21 Copy perAuth .capPayload to an instance of CapPayload and update the
following contents:

saleDetail.batchID res.authResPayload.capResPayload.
batchID

saleDetail.
batchSequenceNum

res.authResPayload.capResPayload.
batchSequenceNum

Process SaleDetail according to brand policy and processing steps.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 552 as of January 2, 2000

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

22 If panToken is present, store panToken .pan and panToken .cardExpiry in
secure data storage and designate its location as panRef .

23 Construct the following contents of PerAuth:

authAmt res.authResPayload.authHeader.
authAmt

authCode res.authResPayload.authHeader.
authCode

approvalCode res.authResPayload.authHeader.
responseData.authValCodes.
approvalCode

authResPayload res.authResPayload

authRetNum res.authTags.authRetNum

batchID batchID

batchSequenceNum batchSequenceNum

captureNow req.captureNow

capAmt res.authResPayload.capResPayload.
capAmt

capCode res.authResPayload.capResPayload.
capCode

capPayload the result of Step 21

capResPayload res.authResPayload.capResPayload

acqCardMsg baggage .acqCardMsg

capToken baggage .capToken

pResPayload the result of Step 19

24 Store in the transaction database:

perAuth the result of Step 20

pi baggage .authToken

panRef panRef

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 553

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

25 If authCode is: then:

approved

declined

expiredCard

invalidPANInfo

signatureFailure

Continue with Step 27.

callIssuer Advise the operator that manual processing is
required. See “Referral Processing” on page
555 for additional information.

noReply Continue with Step 26.

any other value Advise the operator and stop processing.

26 Perform one of the following actions:

• inform the operator that manual processing is required to resubmit the
authorization;

• suspend processing for a period of time and invoke “Prepare for authorization”
on page 500 with appropriate values.

Note: The mechanism to suspend and resume processing is at the discretion of the
application developer.

Note: The amount of time to suspend processing for a noReply response is
determined by merchant or acquirer policy; a reasonable value is in the range of
ten minutes to one hour.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 554 as of January 2, 2000

Merchant Processes AuthRes, continued

Process AuthRes (continued)

Step Action

27 Delete from the message database the AuthReqData whose key is
res.auth Tags.auth RRTags.rrpid .

28 If trans .pResPending is TRUE, invoke “Create PRes” on page 447 with the
following input:

trans trans

rrpid trans .PReqRRPID

chall-C trans .chall-C

pRes TRUE

Capture
processing

If the authorization was approved and the capture was not performed as part of the
authorization process (CaptureNow was FALSE), it will be necessary to do so after the
order has been filled. At that time, invoke “Prepare for capture” on page 593 with the
following input:

trans the transaction record

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 555

Referral Processing

Overview When an Issuer processes an authorization request, the response can indicate three possible
results: approved, declined, or conditionally declined. This latter result is commonly called a
referral and is indicated by an AuthCode value of callIssuer (4).

Upon receiving a referral response:

• An operator may call the Acquirer using a telephone number supplied out-of-band.

• After identifying the transaction, the Acquirer connects the operator to the Issuer.

• The Issuer may convert the authorization to an approval and provide the operator with
ApprovalCode over the phone.

Creating
AuthRes for
referral

When the Payment Gateway receives notification of a referred authorization, it:

• shall not attempt to perform capture processing, even if AuthReq.CaptureNow was set
to TRUE, and

• shall create an AuthRes with AuthCode set to callIssuer.

The AuthRes shall in all other ways be identical to the AuthRes that would be returned on
an approved authorization (without capture); that is, it includes CapToken and
AuthToken , if they would otherwise have been included. (If the referral does not receive
voice authorization, the Payment Gateway will not honor the CapToken or AuthToken .)

Operator
contacts
referral center

Merchant software shall not attempt to authorize a referred authorization by issuing an
additional AuthReq message. An operator may contact the referral center designated by the
Acquirer and attempt to get an ApprovalCode from the Issuer.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 556 as of January 2, 2000

Referral Processing, continued

Issuer converts
to approved

If the Issuer converts the authorization to approved:

• Merchant software shall allow the operator to enter an approval code. The software will
then process the transaction as though the AuthCode had been approved, as follows:

Invoke “Process Referral (Merchant)” on page 557 with the following input:

trans the transaction record

perAuth authorization-specific transaction data

approved TRUE

approvalCode the ApprovalCode entered by the operator

 Note: The original value of AuthCode remains available in the PerAuth record.

• To capture the transaction, the Merchant software may issue a CapReq with
authResPayload.approvalCode set to the new approval number (or may request
capture via an out-of-band message).

Issuer converts
to declined

If the Issuer converts the authorization to declined:

Merchant software shall allow the operator to indicate that the authorization is declined. The
software will then process the transaction as though the AuthCode had been declined, as
follows:

Invoke “Process Referral (Merchant)” on page 557 with the following input:

trans the transaction record

perAuth authorization-specific transaction data

approved FALSE

Payment
Gateway
processes
referral

The Payment Gateway shall process referred authorizations in the same manner as approved
transactions (such as generating an AuthToken or CapToken) with one exception:

All subsequent messages, including capture requests, shall be processed as if the
transaction had been approved if and only if the Merchant provides a valid
ApprovalCode .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 557

Referral Processing, continued

Process referral
(Merchant)

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

approved an instance of BOOLEAN

approvalCode an instance of ApprovalCode (optional)

2 If approved is FALSE, continue with Step 9.

Issuer converted referral to an approval

3 Construct AuthStatus:

authDate perAuth. authDate

authCode approved

authRatio perAuth .authAmt ÷ trans .order.purchAmt

currConv perAuth .authResPayload.currConv

4 Construct Results:

acqCardMsg perAuth .acqCardMsg

authStatus the result of Step 3

5 Construct PResPayload:

completionCode authorizationPerformed

results the result of Step 4

pRsExtensions any message extension(s) required to support
additional business functions (optional)

6 Update the following contents of perAuth :

approvalCode approvalCode

pResPayload the result of Step 5

7 Store in the transaction database:

perAuth perAuth

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 558 as of January 2, 2000

Referral Processing, continued

Process referral (Merchant) (continued)

Step Action

8 If perAuth .captureNow is TRUE, invoke “Create CapReq ” on page 597 with
the following input:

perAuthArray a SEQUENCE consisting of a single item: perAuth

 Stop processing.

Issuer converted referral to a decline

9 Invoke “Create AuthRevReq ” on page 564 with the following input:

trans trans

perAuth perAuth

newAmt zero (0)

Note: The contents of the transaction record and the PerAuth entry will be
changed so trans and perAuth must be refreshed.

10 Construct PResPayload:

completionCode orderRejected

pRsExtensions any message extension(s) required to support
additional business functions (optional)

11 Update the following contents of perAuth :

pResPayload the result of Step 10

12 Delete the following contents of perAuth :

• authToken
• capToken

13 Store in the transaction database:

perAuth perAuth

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 559

Section 3
Authorization Reversal Request/Response Processing

Overview

Introduction The authorization reversal message pair is used to reduce or cancel a previously approved
authorization, or to split a previously unsplit authorization.

Note: AuthRevReq/Res cannot be used to unsplit a previously split transaction.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

AuthRevReq

AuthRevRes

Figure 7: AuthRevReq /AuthRevRes Message Pair

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 560 as of January 2, 2000

Overview, continued

Purpose AuthRevReq carries information from the Merchant necessary for the Payment Gateway to
produce an authorization reversal request message that can be processed by the Acquirer or
financial network for transmission to the Issuer.

This message pair is optional and is used only if change or elimination of an authorization is
required:

• AuthRevReq may be sent to the Payment Gateway at any time after authorization but
before capture in order:

• to change decrease the amount of the authorization,

• to completely remove the authorization whenever an order with an outstanding
authorization will not be completed, or

• to request a subsequent authorization when one was not previously requested (for details,
see page 561).

• If the authorization request included CaptureNow , AuthRevReq may be sent at any
time after the authorization to completely reverse both the capture and the authorization.

• If the original AuthCode was callIssuer, and if the Issuer subsequently declined the
authorization, the Merchant software should send an AuthRevReq so that the Payment
Gateway knows that the CapToken and, if applicable, the AuthToken , are no longer
valid. This is the only situation in which the original authorization was not approved that
an AuthRevReq should be sent.

Caveats An authorization reversal message is simply an advice to the Issuer. Whether the Issuer
actually does any processing is a business decision. For example:

• Some Issuers adjust the cardholder’s open-to-buy only for the most recent authorization
performed and ignore all other requests.

• Some payment systems do not support partial reversals. In this case, the Payment Gateway
should format a response message to the merchant without sending any message to the
Issuer via the payment system. The cardholder’s open-to-buy is lower than it needs to be,
but the merchant has done everything possible to correct the situation.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 561

Overview, continued

Split shipments If, after an initial AuthReq for which a subsequent authorization was not requested, an
operator discovers that a shipment must be split, AuthRevReq shall be used to request a
subsequent authorization, as follows:

• The operator shall submit an AuthRevReq which reduces the AuthAmt to reflect the
value of the initial shipment and with SubsequentAuthInd set to TRUE.

• The Payment Gateway shall return an AuthToken in the AuthRevRes .

• The Merchant shall use this AuthToken in the authorization request for the next partial
shipment.

Reverse most
recent
authorization
only

There may be more than one uncaptured authorization for a given XID at a given time. For
example, in the case of a split shipment, two authorizations might be outstanding if the
merchant split the shipment and then was suddenly able to fill both parts of the order.

If the merchant should then send an AuthRevReq message for the first authorization, the
Total AuthAmt (and other components) of the AuthToken for the second authorization
would be incorrect.

In order to prevent this and similar data problems, authorizations must be reversed in the
opposite of the order in which they were applied. This is true even if some of the
authorizations have been captured; in this case, the captures and any related credits must be
reversed as well. Note that the Merchant must keep whatever data is necessary to ensure that
it can create the messages to reapply all the other messages that were reversed.

Processing
requirements

The Merchant Software shall:

• include either a CapToken or an exact copy of AuthReqData and AuthResPayload
from the original AuthReq/AuthRes pair (with those field modifications indicated in the
following processing steps);

• if the original AuthReq included CaptureNow :

• use AuthRevReq with CaptureNow to reverse the transaction (no other means of
reversing such a transaction are permitted);

• request only a full reversal.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 562 as of January 2, 2000

Merchant Prepares for AuthRev Req

Prepar e for
authorization
reversal

Step Action

1 Receive as input:

perAuth authorization-specific transaction data

newAmt an instance of CurrencyAmount

Note: newAmt must always be less than the amount of the most recently
authorized amount (whether that amount was established by AuthReq or
AuthRevReq). Once the merchant releases the hold on the funds by doing a
partial reversal, it can only be recovered by doing another AuthReq .

2 If any of the following conditions is TRUE, stop processing:

• perAuth .authCode is not approved or callIssuer

• perAuth .authCode is callIssuer and perAuth .approvalCode has not been
defined (See “Referral Processing” on page 555.)

• perAuth .capCode is defined and perAuth .captureNow is FALSE
(Note: The transaction was captured using CapReq rather than AuthReq with
CaptureNow ; use CapRevReq to reverse it.)

• perAuth .capCode is defined and newAmt is not zero

• perAuth .completionCode is creditPerformed

3 Retrieve the transaction record that corresponds to perAuth and designate it as
trans . If not found, abort processing.

4 If perAuth is not the most recently approved authorization that has not been
completely reversed, present the operator with a list of all authorizations that
followed the processing of perAuth along with the corresponding captures and
credits. Inform the operator that all of these transactions must be reversed in order
to continue.

Note: There is no guarantee that these transactions can be successfully
resubmitted after being reversed so a manual confirmation from the operator
should be required to effect the reversals.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 563

Merchant Prepares for AuthRevReq, continued

Prepare for authorization reversal (continued)

Step Action

5 Invoke “Create AuthRevReq ” on page 564 with the following input:

trans trans

perAuth perAuth

newAmt newAmt

requestSub a flag indicating Merchant requests an
additional authorization; TRUE if this
authorization represents a split shipment
(except for the final shipment)

6 Reapply all authorizations, captures, and credits that were reversed in Step 4 in
order to get to the target authorization. Apply other authorizations in their original
sequence. Captures must be applied after authorizations and credits must be
applied after captures.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 564 as of January 2, 2000

Merchant Generates AuthRevReq

Create
AuthRevReq

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

newAmt an instance of CurrencyAmount

requestSubs an instance of BOOLEAN

This procedure uses the following internal variables:

batchID an instance of BatchID

batchSequenceNum an instance of BatchSequenceNum

2 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• subject matches trans .peSubject .

If found, designate the certificate as cert-PE .

Otherwise, stop processing and display a message to the operator indicating that
corrective action must be taken to obtain a current copy of the Payment Gateway
certificate.

Note: Under normal circumstances the certificate is retrieved every 24 hours using
PCertReq and will be available in the trusted cache.

3 Construct AuthRevRRTags:

rrpid a fresh, statistically unique RRPID

merTermIDs from Merchant profile

date current date and time

4 Construct AuthRevTags:

authRevRRTags the result of Step 3

authRetNum perAuth .authRetNum

5 Recommended: Invoke “Create set of Thumbprints for request” on page 118 with
the following input:

brand trans .brand

bin trans .pBIN

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 565

Merchant Generates AuthRevReq, continued

Create AuthRevReq (continued)

Step Action

6 If perAuth .capToken exists:

• if requestSubs is TRUE and perAuth .authReqData.authReqItem.
authReqPayload.subsequentAuthInd is FALSE, continue with Step 7;

• if perAuth .captureNow is TRUE and perAuth .batchID is assigned and the
merchant assigns BatchID , continue with Step 7;

• if perAuth .authCode is callIssuer, continue with Step 11;

• otherwise, continue with Step 12.

Note: If the authorization included a CapToken , the Merchant does not
ordinarily need to include data from the authorization request. The exceptions to
this rule are tested here.

7 Copy perAuth .authReqData to an instance of AuthReqData and update the
following field:

authReqItem.authTags.
transIDs.paySysID

perAuth .transIDs.paySysID

 Designate the result as authReqData .

8 If requestSubs is TRUE, update the following contents of authReqData :

authReqItem.authReqPayload.
subsequentAuthInd

TRUE

9 If perAuth .batchID is not defined or if the merchant does not assign BatchID ,
continue with Step 11.

Otherwise, invoke “Determine batch identification” on page 472 with the
following input:

brand trans .brand

pBIN trans .pBIN

rrpid authRevRRTags.rrpid

origBatchID perAuth .batchID

Designate the value of batchID returned as batchID and the value of
batchSequenceNum returned as batchSequenceNum .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 566 as of January 2, 2000

Merchant Generates AuthRevReq, continued

Create AuthRevReq (continued)

Step Action

10 If perAuth .batchID is defined, update the following components in
authReqData :

saleDetail.batchID batchID

saleDetail.batchSequenceNumbatchSequenceNum

11 Copy perAuth .authResPayload to an instance of AuthResPayload. If
perAuth .authCode is callIssuer, update the following field:

authHeader.responseData.
authValCodes.approvalCode

perAuth .approvalCode

12 Construct AuthRevReqData:

authRevTags the result of Step 4

mThumbs the result of Step 5

authReqData the result of Step 7 (as updated in Step 8)

authResPayload the result of Step 11

authNewAmt newAmt

aRvRqExtensions any message extension(s) required to support
additional business functions (optional)

13 Construct AuthRevReqBaggage:

pi perAuth. authToken if it exists; otherwise
perAuth .pi

capToken perAuth .capToken

14 Invoke “Compose EncB” on page 198 with the following input:

s the Merchant’s signature certificate

r cert-PE

t the result of Step 12

b the result of Step 13

type-t id-set-content-AuthRevReqTBE

type-s id-set-content-AuthRevReqTBS

type-b id-set-content-AuthRevReqBaggage

certs the new Merchant key encryption certificate for
trans .brandID , if received since the last time a
message was sent to this Payment Gateway

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 567

Merchant Generates AuthRevReq, continued

Create AuthRevReq (continued)

Step Action

15 Store in the message database:

authRevReqData the result of Step 12

authRevReqBaggagethe result of Step 13

16 Update the following contents of perAuth :

authNewAmt newAmt

authRevDate authRevRRTags.date

authRevRRPID authRevRRTags.rrpid

17 Store in the transaction database:

perAuth the result of Step 16

18 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder the Payment Gateway

msg the result of Step 14

ext any message extension(s) required to support
additional business functions (optional)

rrpid AuthRevRRTags.rrpid

lid-C trans .transIDs. lid-C

lid-M trans .transIDs. lid-M

xID trans .transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 568 as of January 2, 2000

Merchant Generates AuthRevReq, continued

AuthRevReq data

AuthRevReq EncB(M, P, AuthRevReqData, AuthRevReqBaggage)
AuthRevReqData {AuthRevTags, [MThumbs], [AuthReqData],

[AuthResPayload], AuthNewAmt,
[ARvRqExtensions]}

AuthRevReqBaggage {PI, [CapToken]}
AuthRevTags {AuthRevRRTags, [AuthRetNum]}
MThumbs Thumbprints of certificates, CRLs, and Brand CRL Identifiers

currently held in Merchant’s cache.

AuthReqData Copied from prior, corresponding AuthReq. Not required in
message if CapToken generated by Payment Gateway
contains all relevant data.

AuthResPayload Copied from prior, corresponding AuthRes. Not required in
message if CapToken generated by Payment Gateway
contains all relevant data.

AuthNewAmt New authorization amount requested. A value of zero indicates
that the entire authorization should be reversed; any other
value less than the original most recent authorized amount
indicates a partial reversal. Full or partial reversals are used
by Issuers to adjust the Cardholder’s open to buy.

ARvRqExtensions The data in an extension to the authorization reversal request
shall must be financial and should be related to the processing
of an authorization reversal (or subsequent capture) by the
Payment Gateway, the financial network, or the Issuer.

PI Copied from prior, corresponding AuthReq .

CapToken Copied from prior, corresponding AuthRes .

AuthRevRRTags RRTags page 395.

Fresh RRPID and Date for AuthRev pair.

AuthRetNum Identification of the authorization request used within the
financial network.

Table 59: AuthRevReq Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 569

Payment Gateway Processes AuthRevReq

Process
AuthRevReq

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of EnvelopedData

ext any message extension(s) required to support
additional business functions (optional)

 This procedure uses the following internal variables:

transExists an instance of BOOLEAN

perAuthExists an instance of BOOLEAN

authRetNum an instance of AuthRetNum

authRevCode an instance of AuthRevCode

2 Invoke “Verify EncB” on page 199 with the following input:

d msg

type-t id-set-content-AuthRevReqTBE

type-s id-set-content-AuthRevReqTBS

type-b id-set-content-AuthRevReqBaggage

Designate:

• the value of t returned as req ,
• the value of b returned as baggage , and
• the value of baggage .pi as pi .

3 Validate the following contents of req.authRevTags :

authRevRRTags.rrpid hdr. rrpid

 If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

4 Verify PI by decrypting and matching against stored, previously verified PI from
most recent authorization request. If they do not match, reject the reversal by
sending a “piMismatch” AuthRevCode.

If pi is not in the list of used PIs or conditional PIs, set authRevCode to
piNeverAuthorized and continue with Step 34.

5 If pi was used for an authorization request with an AuthRRPID other than
req.authReqItem.authTags.authRRTags.rrpid , set authRevCode to
piAuthMismatch and continue with Step 34.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 570 as of January 2, 2000

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

6 If pi was used for an authorization request other than the most recently approved
authorization that has not been completely reversed, set authRevCode to
invalidReversal and continue with Step 34.

7 If pi is in the list of conditional PIs and req.authResPayload.authHeader.
responseData.authValCodes.approvalCode is not defined, set
authRevCode to piNeverAuthorized and continue with Step 34.

8 If req.authReqItem.authTags.authRRTags.rrpid appears in the list of
credited RRPIDs or in the list of captured RRPIDs, set authRevCode to
alreadyCaptured and continue with Step 34.

If req.authReqItem.authTags.authRRTags.rrpid appears in the list of
CaptureNow RRPIDs, set authRevCode to authDataMismatch and continue
with Step 34.

9 From the transaction database, retrieve the record for TransIDs in AuthRevTags
hdr .messageIDs.xid . If not found:

• Set transExists to FALSE;
• Set perAuthExist s to FALSE;

• Continue with Step 11.

Otherwise:

• Designate it as trans .
• Set transExists to TRUE.

10 Retrieve from trans the perAuth record for the authorization request that
corresponds to pi . If found, designate it as perAuth . Otherwise, set
perAuthExists to FALSE.

11 From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer , and

• serialNumber matches
msg .signerInfos[1].issuerAndSerialNumber.serialNumber .

Designate it as cert -MS.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 571

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

12 Invoke “Process PI” on page 516 with the following input:

pi pi

cert-MS cert-MS

reversalFlag TRUE

Designate:

• the value of trans returned as trans , and
• the value of authTokenData returned as authTokenData .

13 If baggage .capToken is not present:

• If a CapToken was returned in the most recent authorization response or
authorization reversal response for the corresponding AuthRRPID , set
authRevCode to missingCapToken and continue with Step 34.

• If either req.authReqData or req.authResPayload is not present, set
authRevCode to authDataMissing and continue with Step 34.

• Otherwise, continue with Step 16.

14 Invoke “Process CapToken ” on page 614 with the following input:

capToken baggage .capToken

authRRPID req .authReqItem.authTags.authRRTags.rrpid

If the value of capCode returned is not success:

• Map the value of capCode returned to a corresponding AuthRevCode value
and set authRevCode to the result.

• Continue with Step 34.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 572 as of January 2, 2000

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

15 If both req.authReqData and req.authResPayload are not present, continue
with Step 17.

16 Validate that the contents of req.authReqData and req.authResPayload
match the data returned in the most recent authorization response or authorization
reversal response for the corresponding AuthRRPID with the following
exceptions:

• req.authResPayload.authHeader.responseData.authValCodes.
approvalCode may contain a value that was not returned in the authorization
response if req.authResPayload.authHeader.authcode is callIssuer;

• req.authReqData.saleDetail.batchID and req.authReqData.saleDetail.
batchSequenceNum may contain new values if the Merchant may determine
the BatchID ;

• req.authReqData.authReqItem.authTags.transIDs.paySysID may
contain the value returned in the authorization response; and

• req.authReqData.authReqItem.authReqPayload.subsequentAuthInd
may contain a different value.

If errors occur during validation, set authRevCode to authDataMismatch and
continue with Step 34.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 573

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

17 If perAuthExists is FALSE:

• Construct the following contents of PerAuth from trans , req.authReqData ,
req.authResPayload and capToken :

authAmt a CurrencyAmount representing the amount of
the corresponding authorization request (or the
remaining amount after the most recent
authorization reversal)

authCode an AuthCode representing the result of the
corresponding authorization request

authReqItem an AuthReqItem representing the data of the
corresponding authorization request

authRRPID the RRPID of the corresponding authorization
request

responseData a ResponseData representing the results of the
corresponding authorization response

captureNow the CaptureNow flag of the corresponding
authorization request

• If the CaptureNow flag of the corresponding authorization request was
TRUE, construct the following contents of PerAuth from trans ,
req.authReqData , req.authResPayload and capToken :

batchID the BatchID of the corresponding authorization
request (optional)

batchSequenceNum the BatchSequenceNum of the corresponding
authorization request (optional)

capCode a CapCode representing the result of the capture
processing

saleDetail a SaleDetail representing the data of the
authorization request

Designate the result as perAuth .

18 If perAuthExists is FALSE, store in the transaction record (created by
“Process PI”):

perAuth perAuth

Designate the resulting transaction record as trans .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 574 as of January 2, 2000

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

19 If req.authNewAmt is greater than or equal to perAuth .authAmt or if
req.authNewAmt is not zero and perAuth .captureNow is TRUE:

• Set authRevCode to invalidAmount.
• Continue with Step 34.

20 If perAuth .captureNow is FALSE:

• If perAuth .capCode is defined, set authRevCode to originalProcessed
alreadyCaptured and continue with Step 34.

• Otherwise, continue with Step 25.

21 If req.authNewAmt is not zero, set authRevCode to invalidAmount and
continue with Step 34.

22 If the authorization processing corresponding to AuthRRPID was performed as a
concurrent authorization and capture request, continue with Step 25.

23 If perAuth .batchID is not defined, continue with Step 25.

24 Invoke “Process batch identification” on page 487 with the following input:

brand trans .brand

pBIN cert -MS.subject.commonName.BIN

rrpid req.authRevTags.rrpid

mBatchID req.authReqData.saleDetail.batchID

transType AuthRevReq

origBatchID perAuth .batchID

Designate the value of batchID returned as batchID , the value of capCode
returned as capCode , the value of batchData returned as batchData and the
value of sameBatch returned as sameBatch .

If capCode is not success:

• map the value of capCode to a corresponding AuthRevCode value and set
authRevCode to the result,

• continue with Step 34.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 575

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

25 If req.authNewAmt is zero or if the payment card brand supports partial
reversals:
• Process authorization reversal (either through existing payment card financial

network or locally by the Payment Gateway if allowed by payment brand
rules).

• Set authRevCode and authRetNum and format an instance of
ResponseData based on the results of the authorization reversal process.

Otherwise, set authRevCode to approved.

26 If perAuth .batchID is not defined, continue with Step 30.

27 If auth RevCode is not approved:

• Remove req.authReqItem. authTags.
authRRTags. rrpid from batchData .outstandingRequests .

 Note: This processing intentionally avoids updating transactionDetailSeq in
batchData .

• Continue with Step 30.

28 If batches are not accumulated locally:

• Process capture reversal via existing payment card financial network.
• Update capCode and set sequenceNum based on the results of the capture

reversal process.
• Continue with Step 30.

29 If sameBatch is TRUE, invoke “Update batch (delete item)” on page 496 with
the following input:

Otherwise, invoke “Update batch (add item)” on page 493 with the following
input:

trans trans

perAuth perAuth

rrpid req.authReqItem.authTags.
authRRTags.rrpid

batchData batchData

transAmt req.authNewAmt

transType AuthRevReq

payload req

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 576 as of January 2, 2000

Payment Gateway Processes AuthRevReq, continued

Process AuthRevReq (continued)

Step Action

30 If authRevCode is approved and if req.authNewAmt is zero:

• delete pi from list of used PIs or the list of conditional PIs, and

• if an authToken with the same authRRPID appears in the list of conditional
authToken s, move it to the list of invalid authToken s.

31 If authRevCode is approved and if req.authNewAmt is not zero:

• delete pi from list of conditional PIs,

• add pi to list of used PIs (if it is not already on the list); and

• if an authToken with the same authRRPID appears in the list of conditional
authToken s, move it to the list of invalid authToken s.

32 Copy perAuth .authAmt to an instance of CurrencyAmount and designate the
result as priorAmt .

33 If authRevCode is approved or if brand or acquirer policy requires the
transaction record to be retained:
• Set transExists to TRUE and
• Set perAuthExists to TRUE.

34 Update the following contents of perAuth :

authAmt req.authNewAmt (if authRevCode is
success)

authRetNum authRetNum (if authRevCode is success)

authRevCode authRevCode

capCode from the result of Step 25

responseData from the result of Step 25

35 Invoke “Create AuthRevRes ” on page 577 with the following input:

trans trans

perAuth perAuth

req req

authTokenData authTokenData

priorAmt priorAmt

batchData batchData

transExists transExists

perAuthExists perAuthExists

msgIds hdr.messageIDs

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 577

Payment Gateway Generates AuthRevRes

Create
AuthRevRes

Step Action

1 Receive as input:

trans the transaction record

perAuth authorization-specific transaction data

req an instance of AuthRevReqData

authTokenData an instance of AuthTokenData (optional)

priorAmt an instance of CurrencyAmount

batchData an instance of BatchData

transExists an instance of BOOLEAN

perAuthExists an instance of BOOLEAN

msgIDs an instance of MessageIDs

2 If req.authNewAmt is zero, continue with Step 7.

3 If perAuth .authAmt is greater than zero and is specified in a currency other than
the one used by the cardholder and if the payment system returned the currency
conversion data, construct CurrConv:

currConvRate either:

• the current conversion rate between AuthAmt
currency and Cardholder’s requested currency,
received from the payment system, or

• if the payment system returns the amount in the
billing currency, amountBillingCurrency /
perAuth .authAmt

cardCurr the Cardholder’s billing currency, received from the
payment system

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 578 as of January 2, 2000

Payment Gateway Generates AuthRevRes, continued

Create AuthRevRes (continued)

Step Action

4 Construct AuthHeader:

authAmt perAuth .authAmt

authCode if perAuth .authRevCode is success then success;
otherwise, perAuth .authCode

responseData perAuth .responseData

batchStatus optional: if perAuth .batchID is defined,
batchData .batchStatus

currConv the result of Step 3

5 If capCode is specified, construct CapResPayload:

capCode perAuth .capCode

capAmt perAuth .authAmt

batchID perAuth .batchID (if capCode is success)

batchSequenceNum perAuth .batchSequenceNum (if capCode is
success)

cRsPayExtensions any message extension(s) required to support
additional business functions (optional)

6 Construct AuthResPayload:

authHeader the result of Step 4

capResPayload the result of Step 5

aRsExtensions any message extension(s) required to support
additional business functions (optional)

7 Construct AuthResDataNew:

transIDs trans .transIDs

authResPayloadNew the result of Step 6

 8 Retrieve the current Payment Gateway key encryption certificate for
trans .brandID and trans .pBIN .

If req.mThumbs is absent or if req.mThumbs is present and does not include
the thumbprint of the certificate, designate the certificate as cert-PE and its
Thumbprint as peThumb ; otherwise, set cert-PE and peThumb to NULL.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 579

Payment Gateway Generates AuthRevRes, continued

Create AuthRevRes (continued)

Step Action

9 Retrieve the BrandCRLIdentifier for the brand identified by trans .brand and
designate it as bci ; retrieve its Thumbprint and designate it as bciThumb .

If req.mThumbs is present and includes bciThumb , set bci to NULL.

10 Construct the following contents of AuthRevTags:

authRevRRTags req.authRevTags.authRevRRTags

authRetNum perAuth .authRetNum if it exists

11 Construct AuthRevResData:

authRevCode perAuth .authRevCode

authRevTags the result of Step 10

brandCRLIdentifier bci

peThumb peThumb

authNewAmount perAuth .authAmt

authResDataNew the result of Step 7

aRvRsExtensions any message extension(s) required to support
additional business functions (optional)

12 Invoke “Retrieve Merchant key encryption certificate” on page 537 with the
following input:

brandID trans .brandID

merchantID trans .merchantID

13 If authRevCode is not approved, continue with Step 16.

14 Optional: If perAuth .authAmt is not zero and a CapToken was generated on
the corresponding authorization request, invoke “Create CapToken ” on page 533
with the following input:

trans trans

perAuth perAuth

Designate the value of capToken returned as capToken .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 580 as of January 2, 2000

Payment Gateway Generates AuthRevRes, continued

Create AuthRevRes (continued)

Step Action

15 If perAuth .authAmt is not zero and one of the following conditions exists:

• req.subsequentAuthInd is TRUE; or

• an AuthToken was generated for the corresponding authorization request from
information in trans .installRecurData :

Then invoke “Create AuthToken ” on page 535 with the following input:

trans trans

oldTokenData authTokenData

authAmt req .authNewAmt

priorAmt priorAmt

Designate the value of authToken returned as authToken .

16 If either capToken or authToken is defined, continue with Step 18.

Otherwise, invoke “Compose Enc” on page 186 with the following input:

s the Payment Gateway’s signature certificate

r the result of Step 12

t the result of Step 11

type-t id-set-content-AuthRevResTBE

type-s id-set-content-AuthRevResData

certs cert-PE

17 Append the result of Step 16 to the tag [1]. Continue with Step 21.

18 Construct AuthRevResBaggage:

capTokenNew capToken

authTokenNew authToken

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 581

Payment Gateway Generates AuthRevRes, continued

Create AuthRevRes (continued)

Step Action

19 Invoke “Compose EncB” on page 198 with the following input:

s the Payment Gateway’s signature certificate

r the result of Step 12

t the result of Step 11

b the result of Step 18

type-t id-set-content-AuthRevResTBEB

type-s id-set-content-AuthRevResTBS

type-b id-set-content-AuthRevResBaggage

certs cert-PE

20 Append the result of Step 19 to the tag [0].

21 Store in the message database:

authRevResData the result of Step 11

authRevResBaggage the result of Step 18

22 If transExists is FALSE, delete the transaction record. Otherwise, if
perAuthExists is FALSE, delete the perAuth entry in the transaction record.

Note: These actions remove unnecessary records created as a side effect of
processing invalid authorization reversal requests.

23 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder the Merchant

msg the result of Step 17 or 20

ext any message extension(s) required to support additional
business functions (optional)

rrpid req.authRevTags.rrpid

lid-C msgIDs .lid-C

lid-M msgIDs .lid-M

xID msgIDs .xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 582 as of January 2, 2000

Payment Gateway Generates AuthRevRes, continued

AuthRevRes data

AuthRevRes < EncB(P, M, AuthRevResData, AuthRevResBaggage),
 Enc(P, M, AuthRevResData) >

AuthRevResData {AuthRevCode, AuthRevTags, [BrandCRLIdentifier],
[PEThumb], AuthNewAmt, AuthResDataNew,
[ARvRsExtensions]}

AuthRevResBaggage {[CapTokenNew], [AuthTokenNew]}
AuthRevCode Enumerated code indicating outcome of payment authorization

reversal processing. See page 583.

AuthRevTags Copied from corresponding AuthRevReq
BrandCRLIdentifier List of current CRLs for all CAs under a Brand CA. See

page 347 in Part II.

PEThumb Thumbprint of Payment Gateway certificate provided if
AuthRevReq.MThumbs indicates Merchant needs one.

AuthNewAmt Copied from corresponding AuthRevReq.
AuthResDataNew {TransIDs, [AuthResPayloadNew]}

If AuthNewAmt is not 0, Payment Gateway creates a new
instance of AuthResData (see “AuthRes ” on page 538).

ARvRsExtensions The data in an extension to the authorization reversal response
shall must be financial and should be important for the
processing of the authorization reversal response or a
subsequent capture request by the Payment Gateway, the
financial network, or the Issuer.

CapTokenNew New Capture Token (with updated fields), if AuthNewAmt is
not 0. This replaces the CapToken returned in the
corresponding AuthRes .

AuthTokenNew New Authorization Token (with updated fields). Merchant uses
as the PI in a subsequent AuthReq . See “AuthToken” on
page 378.

TransIDs Copied from corresponding AuthRevReq.
AuthResPayloadNew Formally identical to AuthResPayload (see page 539); if

AuthNewAmt is not 0.

Table 60: AuthRevRes Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 583

Payment Gateway Generates AuthRevRes, continued

AuthRevCode The following values are defined for AuthRevCode .

approved The reversal is approved as requested.

unspecifiedFailure The AuthRevReq could not be processed for a reason that
does not appear elsewhere in this list.

noReply No error is found with the AuthRevReq but the system is
unable to process a reversal at this time. submit a new
AuthRevReq later.

expiredCard Supplied card expiration date (in Cardholder certificate or keyed
by user) has passed.

invalidTransaction No matching authorization transaction is found.

systemError The request could not be processed by a non-SET system
(Acquirer, financial network, Issuer, etc.) because data in the
request is invalid.

missingCapToken CapToken was sent in AuthRes but not included in
AuthRevReq .

invalidCapToken Submitted CapToken does not match the original data.

invalidAmount The AuthNewAmt is invalid.

Table 61: Enumerated Values for AuthRevCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 584 as of January 2, 2000

Merchant Processes AuthRevRes

Process
AuthRevRes

Notes:

• A full AuthRevReq (that is, one in which AuthNewAmt is zero) makes the PI
available for use again.

• If the AuthRevReq is a complete reversal in order to make it possible to reverse an
earlier authorization, be sure to save data from the transaction record that you will need to
construct the replacement authorization request.

Step Action

1 Receive as input:

hdr an instance of MessageHeader

msg an instance of EnvelopedData

ext any message extension(s) required to support
additional business functions (optional)

2 Examine the tag at the beginning of msg .

• If the tag is [0], continue with Step 3.

• Otherwise, continue with Step 4.

3 Invoke “Verify EncB” on page 199 with the following input:

d msg (without the leading tag [0])

type-t id-set-content-AuthRevResTBEB

type-s id-set-content-AuthRevResTBS

type-b id-set-content-AuthRevResBaggage

Designate:

• the value of t returned as res, and
• the value of b returned as baggage .

Continue with Step 5.

4 Invoke “Verify Enc” on page 187 with the following input:

d msg (without the leading tag [1])

type-t id-set-content-AuthRevResTBE

type-s id-set-content-AuthRevResData

Designate the value of t returned as res.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 585

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

5 Validate the following contents of res :

authRevTags.rrpid hdr. rrpid

authResDataNew.transIDs.lid-C hdr .messageIDs.lid-C

authResDataNew.transIDs.lid-M hdr .messageIDs.lid-M

authResDataNew.transIDs.xID hdr .messageIDs.xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

6 From the message database retrieve the instance of AuthRevReqData whose
authRevTags .rrpid matches res.authRevTags .rrpid and designate it as req .
If not found, abort processing.

7 Retrieve the transaction record that is identified by res.authResDataNew.
transIDs.xid , and designate it as trans . If not found, abort processing.

8 Retrieve from trans the perAuth record whose authRRPID is
req.authReqData.rrpid and designate it as perAuth . If not found, abort
processing.

9 Validate the following contents of res.authRevTags :

lid-C trans .lid-C

lid-M trans .lid-M

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode unknownLID

10 If GKThumb res.peThumb is present, verify that it matches the thumbprint of
an existing Payment Gateway encryption certificate in the trusted cache. If not:

• From the untrusted cache, retrieve the key encryption certificate whose
Thumbprint matches res .peThumb and designate it as cert-PE . If not found,
abort processing.

• Invoke “Verify certificate” on page 129 with the following input:

cert cert-PE

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 586 as of January 2, 2000

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

11 If res.authRevCode is not approved, continue with Step 27.

12 If perAuth .captureNow is FALSE, continue with Step 15.

13 Invoke “Process batch information” on page 476 with the following input:

 propBatchID perAuth .authReqData.saleDetail.
batchID

 propSeqNum perAuth .authReqData.saleDetail.
batchSequenceNum

 batchID res.authResDataNew.
authResPayloadNew.
capResPayload.batchID

 seqNum res.authResDataNew.
authResPayloadNew.
capResPayload.batchSequenceNum

 brand trans .brand

 pBIN trans .pBIN

 rrpid perAuth .authRevRRPID

 batchStatusSeq a SEQUENCE with one item:
res.authResDataNew.
authResPayloadNew.authHeader.
batchStatus

 transAmt perAuth .authNewAmt

 transType AuthRevReq

 origBatchID perAuth .batchID

 Designate the value of batchData returned as batchData .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 587

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

14 If TransactionDetail is not stored in BatchData, continue with Step 15.

If propBatchID is batchID , delete the TransactionDetail record with an
authRRPID field equal to perAuth .authRRPID and continue with Step 15.

Otherwise:

• Construct the following contents of TransactionDetail:

 transIDs trans .transIDs

 authRRPID perAuth .authRRPID

 brandID trans .brand

 batchSequenceNum res.authResPayload. capResPayload.
batchSequenceNum

 transactionAmt res.authResPayload. capResPayload.
capAmt

 transactionAmtType credit

 transExtensions any message extension(s) required to
support additional business functions
(optional)

• Append the result to batchData .transactionDetailSeq . Store the updated
batchData in the batch database.

15 If res.authRevCode is approved:

• If req.authNewAmt is zero, continue with Step 22.

• Otherwise, continue with Step 16.

Otherwise, continue with Step 27.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 588 as of January 2, 2000

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

Processing steps for an approved partial reversal

16 Construct AuthStatus:

authDate perAut h.authRevDate

authCode success

authRatio res.authNewAmt ÷ trans .order.purchAmt

currConv res.authResPayloadNew.currConv if present

17 Construct Results:

acqCardMsg perAuth .pResPayload.results.acqCardMsg

authStatus the result of Step 16

18 Construct PResPayload:

completionCode authorizationPerformed

results the result of Step 17

pRsExtensions any message extension(s) required to support
additional business functions (optional)

19 Update the following contents of perAuth :

authAmt res.authNewAmt

authResPayload res.authResPayloadNew

authRetNum res.authRevTags.authRetNum

capToken baggage .capTokenNew if specified; otherwise
NULL

pResPayload the result of Step 18

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 589

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

20 Store in the transaction database:

perAuth perAuth

pi baggage .authTokenNew if specified; otherwise,
NULL

21 Stop processing.

Processing steps for an approved full reversal

22 Construct PResPayload:

completionCode orderReceived

pRsExtensions any message extension(s) required to support
additional business functions (optional)

23 Delete the following contents of perAuth :

• capToken

24 Update the following contents of perAuth :

authAmt res.authNewAmt

authResPayload res.authResPayloadNew

authRetNum res.authRevTags.authRetNum

pResPayload the result of Step 22

25 Store in the transaction database:

perAuth perAuth

pi perAuth .pi

26 Stop processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 590 as of January 2, 2000

Merchant Processes AuthRevRes, continued

Process AuthRevRes (continued)

Step Action

Processing steps for failed reversals

27 Delete the following contents of perAuth :

• authNewAmt
• authRevDate
• authRevRRPID

28 Store in the transaction database:

perAuth perAuth

29 Complete processing based on res.authRevCode :

expiredCard No further processing required.

noReply Save the details of the request to submit a new
AuthRevReq at a later time.

piMismatch

authDataMissing

authDataMismatch

missingCapToken

invalidCapToken

alreadyCaptured

Merchant manual intervention is required. Conditions
that might have led to these responses include:

• incorrect settings specifying the requirements of
the Payment Gateway, and/or

• corruption of the transaction database.

any other value Merchant manual intervention is required.

Note: No change has been made to the original authorization and its status has not
been changed.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 591

Section 4
Capture Request/Response Processing

Overview

Introduction The capture message pair includes a request from a Merchant to a Payment Gateway and a
response from the Payment Gateway to the Merchant.

ReceiverSender
Cardholder Merchant

Receiver

Ac quirer
Pay ment
Gatewa y

CapReq

CapRes

Figure 8: CapReq/CapRes Message Pair

Purpose This message pair provides the mechanism for completing the payment of moneys previously
authorized in one or more authorization transactions. Amounts captured must be previously
authorized using authorization messages. The CapReq carries data from the Merchant
necessary for the Payment Gateway to produce clearing request messages (for payment) that
can be processed by the Acquirer or financial network for transmission to the Issuer. The
CapRes returns the results of the attempted captures.

A single CapReq may contain multiple capture tokens items associated with distinct
authorizations.

The Merchant shall not send a CapReq for a transaction that has already been successfully
captured.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 592 as of January 2, 2000

Overview, continued

Variations Capture may be accomplished by this message pair, although out-of-band methods of capture
outside the scope of this protocol may also be used.

The amount captured may be restricted by payment brand or Acquirer rules such as:

• the total amount captured for a transaction may be required to be no more than (or within a
certain percentage of) the amount indicated by the cardholder in the payment instructions;
or

• the amount of a capture item may be required to be within a certain percentage of the
corresponding authorization request.

See also “One capture per authorization” on page 465.

Expired
authorization

If an authorization has expired (according to rules which are outside the scope of SET), the
Capture Request will fail. Instead, the Merchant may submit an Authorization Reversal
Request (for the full amount authorized), followed by a new Authorization Request (which
may or may not be approved).

Capture
amount vs.
authorized
amount

The capture amount can differ from the authorized amount, and may exceed it. For example,
when the shipping amount is unknown at the time of authorization, it may be omitted or
estimated, but when the capture is submitted, the exact amount of shipping will be applied.

Payment brand and acquirer rules determine permissible amounts. Generally speaking, the
total amount for all shipments related to an order should be reasonably close to PurchAmt ,
the Purchase Amount, but SET does not provide any rules to enforce this.

• Ultimately, if the merchant has submitted an unreasonable capture request and the acquirer
has permitted it to be processed, the cardholder can dispute the transaction.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 593

Merchant Prepares for CapReq

Prepar e for
capture

The Merchant application requires certain data to begin capture processing. The following
processing sequence describe one method of obtaining that data.

Note: If this routine separates requests based on BatchID and multiple batches are open for
a brand and BIN combination, this routine will need to incorporate the same logic for
selecting a BatchID as is used in “Determine batch identification” on page 472.

Step Action

1 Receive as input:

perAuthSeq a sequence of references to PerAuth entries in
the transaction database

2 If the Payment Gateway requires PANToken to be included in the capture request,
continue with Step 6.

3 Create an empty list of sequences of references to PerAuth entries in the
transaction database and designate it as list .

Each sequence in list will be uniquely identified by a combination of brand and
BIN and will generate a separate CapReq . If the Payment Gateway only permits
a single BatchID to appear in a capture request, the BatchID should also be used
to identify each sequence.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 594 as of January 2, 2000

Merchant Prepares for CapReq, continued

Prepare for capture (continued)

Step Action

4 For each item in perAuthSeq :

• Designate the item as perAuth .

• If the authorization has been completely reversed, notify the operator and skip
the item.

• If perAuth .pResPayload.results.authStatus. authCode is not approved,
skip the item.

• If perAuth .capCode is success, skip the item.

• Retrieve the corresponding transaction record and designate it as trans . If not
found, abort processing.

• If trans .brand and trans .pBIN (and possibly BatchID) do not match the
values assigned to an sequence in list , add a new sequence to list (identified by
trans .brand and trans .pBIN and possibly BatchID).

• If batch processing is used and there is no open batch corresponding to
trans .brand and trans .pBIN (and possibly BatchID) and the batch must be
open in order to invoke “Determine batch identification” on page 472, abort
processing.

• Add perAuth to the corresponding sequence.

Notes:

• If the Payment Gateway limits the number of items in a capture request or the
size of a capture request, a new sequence may need to be created to comply
with those requirements.

• If the amount of the capture is different than the amount of the authorization,
the field perAuth .capAmt must be defined.

5 For each sequence in list :

• Designate as brand the value of the BrandID (without Product) that is
associated with this sequence.

• Invoke “Create CapReq ” on page 597 with the following input:

perAuthSeq the corresponding sequence in list

brand brand

Stop processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 595

Merchant Prepares for CapReq, continued

Prepare for capture (continued)

Step Action

A separate CapReq will be generated for each item.

6 For each item in perAuthSeq , perform Steps 7 through 9.

7 Designate the item as perAuth . If perAuth .capCode is success, skip the item;
otherwise, retrieve the corresponding transaction record and designate it as trans .
If not found, abort processing.

8 Designate trans .brand as brand .

9 Invoke “Create CapReq ” on page 597 with the following input:

perAuthSeq a sequence with one item: a reference to
perAuth

panRef trans .panRef

brand brand

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 596 as of January 2, 2000

Merchant Prepares for CapReq, continued

CapReqInfo For the purposes of this documentation, a logical record is defined containing data that
applies to the capture request as a whole and is needed to process the capture response. The
actual implementation of collecting and passing this data is at the discretion of the application
developer. Processing steps included in “Create CapReq ” describe one method of collecting
the data.

capReq Info { rrpid, perAuthSeq, brandID }

rrpid RRPID of the capture request/response pair

perAuthSeq { perAuth Ref + }

brand the BrandID (without Product) of all transactions in the Capture
Request

perAuthRef a reference to a PerAuth entry (and its corresponding transaction
record) in the transaction database.

Table 62: CapReqInfo Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 597

Merchant Generates CapReq

Create CapReq

Step Action

1 Receive as input:

perAuthSeq a sequence of references to PerAuth entries in the
transaction database

panRef a reference to a record in secure data storage
(optional)

brand an instance of BrandID without Product

2 Create:
• an empty CapItemSeq and designate it as capItemSeq ;
• an empty CapTokenSeq and designate it as capTokenSeq

3 Generate a fresh statistically unique RRPID and designate it as rrpid .

4 Create an instance of GeneralizedTime, populate it with the current date and time,
and designate it as now .

5 For each item in perAuthSeq :

• Designate the item as perAuth .

• Perform Steps 6 through 17.

This processing is repeated for each set of input.

6 Retrieve the corresponding transaction record and designate it as trans .

7 If batch processing is used and if the Merchant assigns BatchID , invoke
“Determine batch identification” on page 472 with the following input:

brand brand

pBIN trans .pBIN

rrpid rrpid

Designate the value of batchID returned as batchID and the value of
sequenceNum returned as sequenceNum .

Note: If a single BatchID will apply to every item in the batch and the Merchant
does not assign BatchSequenceNum , this invocation may precede Step 5.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 598 as of January 2, 2000

Merchant Generates CapReq, continued

Create CapReq (continued)

Step Action

8 Construct SaleDetail:

batchID batchID

batchSequenceNum sequenceNum

Populate other components of SaleDetail according to the type of transaction and
brand policy.

9 Construct CapPayload:

capDate now

capReqAmt perAuth .capAmt if defined, otherwise,
perAuth .authAmt

authReqItem perAuth .authReqData.authReqItem (if required
by the Payment Gateway and perAuth .capToken
is not defined)

authResPayload perAuth .authResPayload (if

• required by the Payment Gateway and
perAuth .capToken is not defined; or

• perAuth .authCode is callIssuer)

saleDetail the result of Step 8

cPayExtensions any message extension(s) required to support
additional business functions (optional)

10 Construct CapItem:

transIDs trans .transIDs

authRRPID perAuth .authRRPID

capPayload the result of Step 9

11 Append the result of Step 9 to capItemSeq .

12 If perAuth .capToken exists, append it to capTokenSeq , otherwise, append a
NULL to capTokenSeq .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 599

Merchant Generates CapReq, continued

Create CapReq (continued)

Step Action

13 Update the following contents of perAuth :

capPayload the result of Step 9

capRRPID rrpid

14 Store in the transaction database:

perAuth perAuth

The following processing is performed only once, after the data for each individual
capture item has been created.

15 Designate trans .pBIN as pBIN .

Note: Because all the transactions in a capture request have the same pBIN , it is
sufficient to use the value stored in the last (or only) transaction record.

16 Construct CapRRTags:

rrpid rrpid

merTermIDs from the Merchant profile

date now

17 Construct CapReqInfo (see page 596):

rrpid rrpid

perAuthSeq perAuthSeq

brand brand

panRef panRef

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 600 as of January 2, 2000

Merchant Generates CapReq, continued

Create CapReq (continued)

Step Action

18 Recommended: Invoke “Create set of Thumbprints for request” on page 118 with
the following input:

brand brand

bin pBIN

19 Construct CapReqData:

capRRTags the result of Step 16

mThumbs the result of Step 18

capItemSeq capItemSeq

cRqExtensions any message extension(s) required to support
additional business functions (optional)

20 From the trusted cache, retrieve the certificate whose:

• keyUsage includes keyEncipherment and

• subject matches trans .peSubject .

If found, designate the certificate as cert-PE .

Otherwise, stop processing and display a message to the operator indicating that
corrective action must be taken to obtain a current copy of the Payment Gateway
certificate.

Notes:

• Because all the transactions in a capture request have the same peSubject , it is
sufficient to use the value stored in the last (or only) transaction record.

• Under normal circumstances the certificate is retrieved every 24 hours using
PCertReq and will be available in the trusted cache.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 601

Merchant Generates CapReq, continued

Create CapReq (continued)

Step Action

21 If panRef is specified, continue with Step 23.

Otherwise, invoke “Compose EncB” on page 198 with the following input:

 s the Merchant’s signature certificate

 r cert-PE

 t the result of Step 19

 b the result of Step 12

type-t id-set-content-CapReqTBE

type-s id-set-content-CapReqTBS

type-b id-set-content-CapTokenSeq

certs the new Merchant key encryption certificate for
brandID , if received since the last time a
message was sent to this Payment Gateway

22 Append the result of Step 21 to the tag [0]. Continue with Step 26.

23 Construct the following contents of PANToken from the record in secure data
storage identified by panRef :

 pan PAN

 cardExpiry expiration date

24 Invoke “Compose EncBX” on page 203 with the following input:

 s the Merchant’s signature certificate

 r cert-PE

 t the result of Step 19

 b the result of Step 12

 p the result of Step 23

type-t id-set-content-CapReqTBEX

type-s id-set-content-CapReqTBSX

type-p id-set-content-PANToken

type-b id-set-content-CapTokenSeq

certs the new Merchant key encryption certificate for
brandID , if received since the last time a
message was sent to this Payment Gateway

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 602 as of January 2, 2000

Merchant Generates CapReq, continued

Create CapReq (continued)

Step Action

25 Append the result of Step 24 to the tag [1].

26 Store in the message database:

capReqData the result of Step 19

capReqInfo the result of Step 17

27 Invoke “Send Message” on page 109 with the following input:

recip the Cardholder the Payment Gateway

msg the result of either Step 22 or Step 25

ext any message extension(s) required to support additional
business functions (optional)

rrpid rrpid

lid-C if only a single set of input was received,
trans .transIDs. lid-C

lid-M if only a single set of input was received,
trans .transIDs. lid-M

xID if only a single set of input was received,
trans .transIDs. xID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 603

Merchant Generates CapReq, continued

CapReq data

CapReq < EncB(M, P, CapReqData, CapTokenSeq),
 EncBX(M, P, CapReqData, CapTokenSeq, PANToken) >

CapTokenSeq is external “baggage”.

If PANToken is included, it must correspond to a single CapItem
and a single CapToken in CapTokenSeq .

CapReqData {CapRRTags, [MThumbs], CapItemSeq, [CRqExtensions]}
CapTokenSeq {[CapToken] +}

One or more CapTokens , in ordered one-to-one correspondence
with CapItems in CapItemSeq .

Note: Any CapToken may be omitted; that is, may be NULL .

PANToken See page 382

CapRRTags RRTags , see page 395.

Fresh RRPID and Date.
MThumbs Thumbprints of certificates, CRLs, and Brand CRL Identifiers

currently held in Merchant’s cache.

CapItemSeq {CapItem +}

One or more CapItem in an ordered array.

CRqExtensions The data in an extension to the capture request shall must be financial
and should be important for the processing of a capture message by
the Payment Gateway, the financial network, or the Issuer.

Note: The data in this extension applies to every item in the capture
request; data related to a specific item should be placed in an
extension to CapPayload .

CapToken Copied from corresponding AuthRes (see page 538) or
AuthRevRes (see page 582).

CapItem {TransIDs, AuthRRPID, CapPayload}
TransIDs Copied from corresponding AuthRes (see page 538) or

AuthRevRes (see page 582).

AuthRRPID The RRPID that appeared in the corresponding AuthReq (see
page 506) or AuthRevReq (see page 568).

CapPayload See page 604.

Table 63: CapReq Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 604 as of January 2, 2000

Merchant Generates CapReq, continued

CapPayload data

CapPayload {CapDate, CapReqAmt, [AuthReqItem],
[AuthResPayload], [SaleDetail], [CPayExtensions]}

CapDate Date of capture; this is the Transaction Date that will appear
on the cardholder’s statement.

CapReqAmt Capture amount requested by Merchant, may differ from
AuthAmt ; this is the Transaction Amount (before any
currency conversion) that will appear on the cardholder’s
statement.

AuthReqItem See “AuthReq Data” on page 506.

Required if the corresponding CapToken is not present or the
Payment Gateway/Acquirer systems do not contain the relevant
authorization request data.

AuthResPayload See page 539.

Required if the corresponding CapToken is not present or the
Payment Gateway/Acquirer systems do not contain the relevant
authorization response data.

SaleDetail See page 383.

CPayExtensions The data in an extension to the capture request payload shall
must be financial and should be important for the processing of
a capture message by the Payment Gateway, the financial
network, or the Issuer.

Note: The data in this extension applies to an individual item in
the capture request; data related to the entire capture request
message should be placed in an extension to CapReqData .

Table 64: CapPayload Data

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 605

Payment Gateway Processes CapReq

Process CapReq

Step Action

1 Receive as input:

 hdr an instance of MessageHeader

 msg an instance of EnvelopedData

 ext any message extension(s) required to support
additional business functions (optional)

 This procedure uses the following internal variables:

 transExists an instance of BOOLEAN

 perAuthExists an instance of BOOLEAN

 capCode an instance of CapCode

 storeLocally an instance of BOOLEAN

2 Examine the tag at the beginning of msg .

• If the tag is [0], continue with Step 3.

• Otherwise, continue with Step 4.

3 Invoke “Verify EncB” on page 199 with the following input:

d msg (without the leading tag [0])

type-t id-set-content-CapReqTBE

type-s id-set-content-CapReqTBS

type-b id-set-content-CapTokenSeq

Designate:
• the value of t returned as req , and
• the value of b as capTokenSeq .

Continue with Step 6.

4 Invoke “Verify EncBX” on page 205 with the following input:

d msg (without the leading tag [1])

type-t id-set-content-CapReqTBEX

type-s id-set-content-CapReqTBSX

type-p id-set-content-PANToken

type-b id-set-content-CapTokenSeq

Designate:
• the value of t returned as req ,
• the value of p returned as panToken , and
• the value of b as capTokenSeq .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 606 as of January 2, 2000

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

5 Validate the following contents of req :

capRRTags.rrpid hdr. rrpid

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

6 If req.capItemSeq includes only one capItem , validate the following contents
of req.capItemSeq.capItem.transIDs :

lid-C hdr .messageIDs.lid-C

lid-M hdr .messageIDs.lid-M

xID hdr .messageIDs.xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

7 Create an empty CapResItemSeq and designate it as capResItemSeq .

Create an empty sequence of BatchID and designate it as batchIDSeq .

8 From the trusted cache, retrieve the certificate whose:

• keyUsage is digitalSignature,

• issuer matches msg .signerInfos[1].issuerAndSerialNumber.issuer , and

Designate the certificate as cert-MS .

9 Designate cert-MS .MerchantData.merAcquirerBIN as pBIN .

Designate cert-MS .subject.organizationName as brandID .

10 For each capItem in req.capItemSeq :

• Designate the item as item .

• Perform Steps 11 through 39.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 607

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

Processing for each capItem

11 Set capCode to success.

12 From the transaction database, retrieve the record for item .transIDs.xid . If not
found:

• Set capCode to unknownXID and continue with Step 34.

• Set transExists to FALSE;
• Set perAuthExists to FALSE;

• Continue with Step 16.

Otherwise:

• Designate it as trans .
• Set transExists to TRUE.

13 Validate the following contents of item .transIDs :

lid-C trans .transIDs.lid-C

lid-M trans .transIDs.lid-M

If errors occur during validation, set capCode to unknownLID and continue with
Step 34.

14 If the perAuth record for the authorization request that corresponds to
item .authRRPID does not exist, set perAuthExists to FALSE.

Otherwise:
• retrieve the perAuth record and designate it as perAuth ; and
• set perAuthExists to TRUE.

15 If one of the following is TRUE:
• perAuthExists is TRUE and perAuth .capCode is success, or
• item .authRRPID appears on the list of captured RRPIDs.

then set capCode to invalidCapToken duplicateRequest and continue with
Step 34.

16 If the corresponding entry in capTokenSeq is present,

• Invoke “Process CapToken ” on page 614 with the following input:

capToken the entry from capTokenSeq (including the
leading tag)

• Designate the value of capCode returned as capCode and the value of
capTokenData returned as capTokenData . If capCode is not success,
continue with Step 34. Otherwise, continue with Step 19.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 608 as of January 2, 2000

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

17 If capture without CapToken is not supported a CapToken was returned in the
most recent authorization response or authorization reversal response for
item .authRRPID , set capCode to capTokenMissing and continue with Step 34.

18 If either item .capPayload.authReqItem or
item .capPayload.authResPayload is not present, set capCode to
authDataMissing and continue with Step 34.

19 If item .capPayload.authReqItem is present, validate that its contents match
the data returned in the most recent authorization response or authorization
reversal response for the item .authRRPID .

If errors occur during validation, set capCode to invalidAuthData and continue
with Step 34.

20 If item .capPayload.authResPayload is present, validate that its contents
match the data returned in the most recent authorization response or authorization
reversal response for the item .authRRPID with the following exception:

• If item .capPayload.authResPayload.authHeader.authcode is
callIssuer, then item .capPayload.authResPayload.authHeader.
responseData.authValCodes.approvalCode may contain a value that
was not returned in the authorization response.

If errors occur during validation, set capCode to invalidAuthData and continue
with Step 34.

21 If item .authRRPID appears in the list of fully reversed RRPIDs, set capCode
to invalidAuthData and continue with Step 34.

22 If item .capPayload .authResPayload .authHeader.responseData.
authValCodes. approvalCode is not present, set capCode to
invalidAuthData and continue with Step 34.

23 Validate that the difference between item .capPayload.capReqAmt and the
amount of the corresponding authorization request (or the remaining amount after
the most recent authorization reversal) is within guidelines established by
Acquirer or brand policy. If not, set capCode to amountError and continue with
Step 34.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 609

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

24 If item .authRRPID identifies an entry in the list of conditional PIs, move the
conditional PI identified by item .authRRPID to the list of used PIs.

If an authToken identified by item .authRRPID appears in the list of
conditional authToken s, delete it from that list (since the presence of the
ApprovalCode means it is no longer conditional).

25 Validate the components of item .capPayload.saleDetail according to brand
policy. If errors occur during validation, set capCode appropriately and continue
with Step 34.

26 If perAuthExists is FALSE, construct the following contents of PerAuth from
trans , item .capPayload. authReqItem ,
item .capPayload. authResPayload and capToken Data:

authAmt a CurrencyAmount representing the amount of
the corresponding authorization request (or the
remaining amount after the most recent
authorization reversal)

authCode an AuthCode representing the result of the
corresponding authorization request

authReqItem an AuthReqItem representing the data of the
corresponding authorization request

authRRPID the RRPID of the corresponding authorization
request

responseData a ResponseData representing the results of the
corresponding authorization response

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 610 as of January 2, 2000

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

27 If transExists is FALSE, store the corresponding values from
item .capPayload.authReqItem , item .capPayload.authResPayload and
capTokenData (or as otherwise noted) in the transaction database:

brand brandID (without Product)

brandID brandID

purchAmt a CurrencyAmount representing the purchase
amount of the transaction

pan Either:

• panToken .pan (if present)
• or from the value of panToken returned in

Step 16

Note: If not available, set capCode to
authDataMissing and continue with Step 34.

cardExpiry Either:

• panToken .cardExpiry (if present)
• or from the value of panToken returned in

Step 16

Note: If not available, set capCode to
authDataMissing and continue with Step 34.

transIDs the TransIDs of the transaction

pBIN pBIN

perAuth the result of Step 26

Designate the resulting transaction record as trans .

28 If batch processing is not used, continue with Step 31.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 611

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

29 Invoke “Process batch identification” on page 487 with the following input:

brand trans .brand

pBIN pBIN

rrpid req.capRRTags.rrpid

mBatchID item .capPayload.saleDetail.batchID

transTypes CapReq

If the value of capCode returned is not success:

• designate the value of capCode returned as capCode , and
• continue with Step 34.

Otherwise, designate the value of batchID returned as batchID and the value of
batchData returned as batchData .

30 If batchID does not appear in batchIDSeq , append batchID to batchIDSeq .

31 If batches are not accumulated locally:

• Process capture via existing payment card financial network using transaction
data from trans and perAuth .

• Set capCode and sequenceNum (if provided) based on the results of the
capture process.

• Continue with Step 33

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 612 as of January 2, 2000

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

32 Invoke “Update batch (add item)” on page 493 with the following input:

trans trans

perAuth perAuth

rrpid req.capRRTags.rrpid

batchData batchData

sequenceNum item .capPayload.saleDetail.
batchSequenceNum

transAmt item .capPayload.capReqAmt

transType CapReq

payload item .capPayload

If the value of batchOK returned is FALSE, designate the value of capCode
returned as capCode .

Otherwise, designate the value of sequenceNum returned as sequenceNum .

33 If capCode is success, add perAuth .authRRPID to the list of captured
RRPIDs.

34 If capCode is success or if brand or acquirer policy requires the transaction
record to be retained:

• set transExists to TRUE, and
• set perAuthExists to TRUE.

Otherwise, continue with Step 37.

35 Update the following contents of perAuth :

capCode capCode

capDate item .capPayload.capDate

capAmt item .capPayload.capReqAmt

batchID batchID

batchSequenceNum sequenceNum

saleDetail item .capPayload.saleDetail

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 613

Payment Gateway Processes CapReq, continued

Process CapReq (continued)

Step Action

36 Store in the transaction database:

perAuth perAuth

37 Construct CapResPayload:

capCode capCode

capAmt item .capPayload.capReqAmt

batchID batchID

batchSequenceNum sequenceNum

cRsPayExtensions any message extension(s) required to support
additional business functions (optional)

38 Construct CapResItem:

transIDs item .transIDs

authRRPID item .authRRPID

capResPayload the result of Step 37

39 Append the result of Step 38 to capResItemSeq .

40 If transExists is FALSE, delete the transaction record. Otherwise, if
perAuthExists is FALSE, delete the perAuth entry in the transaction record.

Note: These actions remove unnecessary records created as a side effect of
processing invalid capture items.

End of processing for each capItem

41 Invoke “Create CapRes ” on page 616 with the following input:

transIDs item .transIDs (if a single set of input was
received)

itemSeq capResItemSeq

batchIDSeq batchIDSeq

req req

brandID brandID

pBIN pBIN

merchantID cert-MS .MerchantData.merID

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 614 as of January 2, 2000

Payment Gateway Processes CapReq, continued

Process
CapToken

Step Action

1 Receive as input:

capToken an instance of CapToken

authRRPID an instance of RRPID

This procedure uses the following internal variables:

capCode an instance of CapCode

2 Set capCode to success.

3 Examine the tag at the beginning of capToken .

• If the tag is [0], continue with Step 4.
• Otherwise, continue with Step 5.

4 Invoke “Verify EncX” on page 195 with the following input:

d capToken (without the leading tag [0])

type-t id-set-content-CapTokenTBEX

type-s id-set-content-CapTokenData

type-p id-set-content-PANToken

Designate:

• the value of t returned as capTokenData , and
• the value of p returned as panToken .

Continue with Step 6.

5 Invoke “Verify Enc” on page 187 with the following input:

d capToken (without the leading tag [1])

type-t id-set-content-CapTokenTBE

type-s id-set-content-CapTokenData

Designate the value of t returned as capTokenData .

6 Verify that the entity identified by capToken .signerInfos[1].
IssuerAndSerialNumber is the Payment Gateway. If not, set capCode to
invalidCapToken and continue with Step 8.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 615

Payment Gateway Processes CapReq, continued

Process CapToken (continued)

Step Action

7 Validate the following contents of capTokenData :

authRRPID authRRPID

If errors occur during validation, set capCode to invalidCapToken.

8 Return the following:

capCode capCode

capTokenData capTokenData

panToken panToken

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 616 as of January 2, 2000

Payment Gateway Generates CapRes

Create CapRes

Step Action

1 Receive as input:

transIDs an instance of TransIDs (optional)

itemSeq an instance of CapResItemSeq

batchIDSeq a sequence of BatchID

req an instance of CapReqData

brandID an instance of BrandID

pBIN an instance of BIN

merchantID an instance of MerchantID

2 Optional: Create an empty BatchStatusSeq; for each item in batchIDSeq ,
optionally append the BatchStatus component of its BatchData record to the
sequence. The status of other batches belonging to the Merchant may also be
appended to the sequence.

Note: The mechanism to determine when batch status is to be returned as well as
the mechanism to select batches for which information is to be returned is at the
discretion of the Acquirer and the Payment Gateway vendor.

3 Retrieve the current Payment Gateway key encryption certificate for the brand
identified by brandID and bin . If not found, abort processing.

If req.mThumbs is absent or if req.mThumbs is present and does not include
the thumbprint of the certificate, designate the certificate as cert-PE and its
Thumbprint as peThumb ; otherwise, set cert-PE and peThumb to NULL.

4 Retrieve the BrandCRLIdentifier for the brand identified by brandID (without
Product) and designate it as bci ; retrieve its Thumbprint and designate it as
bciThumb . If not found, abort processing.

If req.mThumbs is present and includes bciThumb , set bci to NULL.

5 Construct CapResData:

capRRTags req.capRRTags

brandCRLIdentifier bci

peThumb GKThumb peThumb

batchStatusSeq the result of Step 2

CapResItemSeq itemSeq

cRsExtensions any message extension(s) required to support
additional business functions (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 617

Payment Gateway Generates CapRes, continued

Create CapRes (continued)

Step Action

6 Invoke “Retrieve Merchant key encryption certificate” on page 537 with the
following input:

brandID brandID

merchantID merchantID

7 Invoke “Compose Enc” on page 186 with the following input:

 s the Payment Gateway’s signature certificate

 r the result of Step 6

 t the result of Step 5

type-t id-set-content-CapResTBE

type-s id-set-content-CapResData

certs cert-PE

8 Store in the message database:

 capResData the result of Step 5

9 Invoke “Send Message” on page 109 with the following input:

 recip the Merchant

 msg the result of Step 7

 ext any message extension(s) required to support
additional business functions (optional)

 rrpid req.capRRTags. rrpid

 lid-C transIDs .lid-C (if specified)

 lid-M transIDs .lid-M (if specified)

 xID transIDs .xID (if specified)

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 618 as of January 2, 2000

Payment Gateway Generates CapRes, continued

CapRes data

CapRes Enc(P, M, CapResData)
CapResData {CapRRTags, [BrandCRLIdentifier], [PEThumb],

[BatchStatusSeq], CapResItemSeq, [CRsExtensions]}
CapRRTags RRTags (see page 395); copied from CapReq.
BrandCRLIdentifier List of current CRLs for all CAs under a Brand CA . See page 347

in Part II.

PEThumb Thumbprint of Payment Gateway certificate provided if
CapReqData.MThumbs indicates Merchant needs one.

BatchStatusSeq {BatchStatus +}
CapResItemSeq {CapResItem +}

Order corresponds to CapReq.
CRsExtensions The data in an extension to the capture response shall must be

financial and should be important for the processing of the capture
response or a subsequent capture reversal or credit request by the
Payment Gateway, the financial network, or the Issuer.

Note: The data in this extension applies to every item in the capture
response; data related to a specific item should be placed in an
extension to CapResPayload .

BatchStatus See page 396.

CapResItem {TransIDs, AuthRRPID, CapResPayload}
TransIDs Copied from corresponding CapReq .

AuthRRPID The RRPID that appeared in the corresponding AuthReq or
AuthRevReq ; copied from corresponding CapReq .

CapResPayload See page 619.

Table 65: CapRes Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 619

Payment Gateway Generates CapRes, continued

CapResPayload data

CapResPayload {CapCode, CapAmt, [BatchID], [BatchSequenceNum],
[CRsPayExtensions]}

CapCode Enumerated code indicating status of capture. See page 620.

CapAmt Copied from corresponding CapReq.
BatchID Identification of the settlement batch for Merchant-Acquirer

accounting; copied from corresponding CapReq .

BatchSequenceNum The sequence number of this item within the batch; copied from
corresponding CapReq.

CRsPayExtensions The data in an extension to the capture response payload shall
must be financial and should be important for the processing of
the capture response or a subsequent capture reversal or credit
request by the Payment Gateway, the financial network, or the
Issuer.

Note: The data in this extension applies to an individual item in
the capture response; data related to the entire capture
response message should be placed in an extension to
CapResData .

Table 66: CapResPayload Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 620 as of January 2, 2000

Payment Gateway Generates CapRes, continued

CapCode The following values are defined for CapCode .

success The capture item was successfully processed by the Payment
Gateway.

unspecifiedFailure The reason for the failure does not appear elsewhere in this list.

duplicateRequest A capture request has already been processed for this transaction
(XID and AuthRRPID).

authExpired The authorization request was processed too long ago. The maximum
time period is defined by brand or Acquirer rules.

authDataMissing The authorization information was not present in the capture request.

invalidAuthData The authorization information is not valid for this transaction.

capTokenMissing The CapToken necessary to process this item was not present in the
capture request.

invalidCapToken The CapToken is not valid for this transaction.

batchUnknown The batch for this item is unknown to the Payment Gateway.

batchClosed The batch for this item has already been closed.

unknownXID The XID is not recognized.

unknownLID LID-C or LID-M is not recognized.

Table 67: Enumerated Values for CapCode

Future values
for CapCode

The following conditions were identified after the ASN.1 for version 1.0 was completed.
They are currently defined as constants mapping to unspecifiedFailure. In a future version of
the ASN.1, these values will be added to the ENUMERATED CapCode . Application
developers are encouraged to use these symbolic names in place of unspecifiedFailure.

amountError The difference between the requested capture amount and the amount
of the corresponding authorization request (or the remaining amount
after the most recent authorization reversal) does not conform to
guidelines established by Acquirer or brand policy.

badSeqNum The Merchant provided a batch sequence number that has already
been used.

batchWrong The Merchant specified a batchID that is defined for a different
brand and BIN combination.

batchDataNeeded The Merchant must specify the batchID and batchSequenceNum .

Table 68: Future Enumerated Values for CapCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 621

Merchant Processes CapRes

Process CapRes

Step Action

1 Receive as input:

 hdr an instance of MessageHeader

 msg an instance of EnvelopedData

 ext any message extension(s) required to support
additional business functions (optional)

2 Invoke “Verify Enc” on page 187 with the following input:

d msg

type-t id-set-content-CapResTBE

type-s id-set-content-CapResData

Designate the value of t returned as res .

3 Validate the following contents of res :

capRRTags.rrpid hdr. rrpid

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

4 From the message database:

• retrieve the instance of CapReqData whose rrpid matches
res.capRRTags.rrpid and designate it as req ;

• retrieve the instance of CapReqInfo whose rrpid matches
res.capRRTags.rrpid and designate it as info .

If either is not found, abort processing

5 Verify that the number of items in res.capResItemSeq is the same as the
number of items in info .perAuthSeq . If not, invoke “Create Error Message” on
page 135 with the following input:

errorCode wrapperMsgMismatch

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 622 as of January 2, 2000

Merchant Processes CapRes, continued

Process CapRes (continued)

Step Action

6 If req includes only one item, validate the following contents of
res.capResItemSeq[1].capResItem.transIDs :

lid-C hdr .messageIDs.lid-C

lid-M hdr .messageIDs.lid-M

xID hdr .messageIDs.xID

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input:

errorCode wrapperMsgMismatch

7 If GKThumb res.peThumb is present, verify that it matches the thumbprint of
an existing Payment Gateway key encryption certificate in the trusted cache. If
not:

• From the untrusted cache, retrieve the key encryption certificate whose
Thumbprint matches res .peThumb and designate it as cert-PE .

• Invoke “Verify certificate” on page 129 with the following input:

cert cert-PE

8 For each capResItem in res.capResItemSeq :

• Designate the item as item .
• Designate the corresponding entry in info .perAuthSeq as perAuth .

• Perform Steps 9 through 18.

This processing is repeated for each set of input.

9 Retrieve the transaction record that corresponds to perAuth and designate it as
trans . If not found, abort processing.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 623

Merchant Processes CapRes, continued

Process CapRes (continued)

Step Action

10 Validate the following contents of CapRRTags item .transIDs :

xid trans .transIDs.xid

lid-C trans .transIDs.lid-C

lid-M trans .transIDs.lid-M

If errors occur during validation, invoke “Create Error Message” on page 135
with the following input based on the field that failed:

errorCode xid unknownXID

lid-C unknownLID

lid-M unknownLID

11 Invoke “Process batch information” on page 476 with the following input:

 propBatchID perAuth .capPayload.saleDetail.batchID

 propSeqNum perAuth .capPayload.saleDetail.
batchSequenceNum

 batchID item .capResPayload.batchID

 seqNum item .capResPayload.batchSequenceNum

 brandID trans .brand

 pBIN trans .pBIN

 rrpid hdr. rrpid

 transAmt perAuth .capPayload.capReqAmt

 transType CapReq

 Designate the value of batchData returned as batchData .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 624 as of January 2, 2000

Merchant Processes CapRes, continued

Process CapRes (continued)

Step Action

12 Optional:
• Construct the following contents of TransactionDetail:

 transIDs trans .transIDs

 authRRPID perAuth .authRRPID

 brandID trans .brand

 batchSequenceNum item .capResPayload.
batchSequenceNum

 transactionAmt item .capResPayload.capAmt

 transactionAmtType credit

 transExtensions any message extension(s) required to
support additional business functions
(optional)

• Append the result to batchData .transactionDetailSeq . Store the updated
batchData in the batch database.

13 Construct CapStatus:

capDate perAuth .capPayload.capDate

capCode item .capResPayload.capCode

capRatio item .capResPayload.capAmt ÷
trans. order.purchAmt

14 Update the following components of perAuth. pResPayload.results :

capStatus the result of Step 13

15 If item .capResPayload .capCode is success, update the following
components of perAuth .pResPayload :

completionCode capturePerformed

16 Copy perAu th.capPayload to an instance of CapPayload and update the
following contents:

saleDetail.batchID item .capResPayload.batchID

saleDetail.
batchSequenceNum

item .capResPayload.batchSequenceNum

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of January 2, 2000 Page 625

Merchant Processes CapRes, continued

Process CapRes (continued)

Step Action

17 If capCode is success, Update the following components of perAuth :

capAmt item .capResPayload.capAmt

capCode item .capResPayload.capCode

capPayload the result of Step 16

capResPayload item .capResPayload

18 Store in the transaction database:

perAuth the result of Step 17

End of processing for each set of input.

19 Delete from the message database the instance of CapReqData and the instance of
CapReqInfo whose rrpid matches res.capRRTags.rrpid .

20 If res.batchStatusSeq is present, invoke “Process BatchStatus ” on page 479
with the following input:

batchStatusSeq res .batchStatusSeq

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 626 as of January 2, 2000

Stay tuned

More to come We plan to release the processing steps for the following messages in about a week:

• Capture Reversal or Credit Data
• Capture Reversal Request/Response Processing
• Credit Request/Response
• Credit Reversal Request/Response Processing
• Payment Gateway Certificate Request/Response Processing
• Batch Administration Request/Response Processing

	Common Data and Flows
	Data Structures
	General Flow

	Cardholder/Merchant Messages
	Payment Initialization Request/Response Processing
	Purchase Request/Response Processing
	Inquiry Request/Response Processing

	Merchant/Payment Gateway Messages
	Batch Processing
	Merchant Batch Procedures
	Shared Batch Procedures
	Payment Gateway Batch Procedures

	Authorization Request/Response Processing
	Referral Processing

	Authorization Reversal Request/Response Processing
	Capture Request/Response Processing

	Stay tuned

