
Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 1

Draft Version 1.0.1

Part I
System Design Considerations

Overview

Introduction Part I summarizes system design considerations to be used in developing SET toolkits and
applications. It provides background information and introduces the salient features and
notation that will be used in subsequent parts of SET Book 2: Programmer’s Guide.

Organization The following chapters are included:

Chapter Title Contents Page

1 Introduction Provides background information
and an overview of payment
processing.

6

2 System Architecture Provides an overview of the system
architecture.

37

3 Technical Requirements Summarizes other design
considerations that affect the overall
technical requirements for SET.

52

4 System Concepts Summarizes other important system
concepts pertinent to understanding
the architecture of SET.

84

5 Processing Provides a high-level overview of
the step-by-step processing of
common cryptographic treatments,
as well as other common processing
used by the payment and certificate
management protocol descriptions
in this Programmer’s Guide.

108

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 2 as of December 10, 1998

Draft Version 1.0.1

Overview, continued

Definitive
source for
information

The SET protocol is described in SET Book 2: Programmer’s Guide and SET Book 3:
Formal Protocol Definition. Because of the length of the documentation, it is possible that
conflicts occur between the two books. In the event of conflicts, the following prioritized list
should be used to determine which source is to be considered definitive (with items
appearing first in the list being more definitive that items appearing later in the list):

Technical Bulletins published by SETCo
Book 3 Part II: ASN.1 Code
Book 3 Part I: Formal Protocol Definition
Book 2 Part I: System Design Considerations
Book 2 Part II: Certificate Management
Book 2 Part III: Payment System
Book 2 Appendices A, C, E, F, G, H, J, K, L, M, R
Book 2 Appendices T, U, V
Book 2 Appendices B, D, N, P, S

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 3

Draft Version 1.0.1

Scope and audience

Scope This book is intended for readers who will be developing software for cardholder and
merchant systems. There are instances when requirements specific to the Payment Gateway
and Certificate Authority systems are stated. These additional requirements, however, are
informative and intended to assist the reader in understanding the processing performed by
these systems. applications that support electronic payment using the SET protocol as
described in this specification; this includes Cardholder, Merchant, Payment Gateway,
Acquirer, Issuer, and Certificate Authority software.

The processing steps in this book are requirements for these applications. Any additional
processing performed by these applications, including processing related to SET messages, is
outside the scope of this specification.

Specifically, the specification does not address:

� order management processing performed by merchants,

� the interface between the Payment Gateway and the existing financial system, or

� the mechanism for processing certificate requests, which depends on payment card brand
and financial institution policy.

Audience It is assumed that the reader:

� will be developing applications that support electronic payment using the SET protocol as
listed above;

� is familiar with the business requirements defined in SET Book 1: Business Description;
and

� possesses a general understanding of cryptography and networking protocols.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 4 as of December 10, 1998

Draft Version 1.0.1

Brand and Acquirer requirements

 Brand-specific
requirements

Requirements that have been published by payment card brands can be found at
http://www.setco.org/[brandname]. Among the requirements to be specified by the brands are
the following:

� mapping of SET data elements to the brand’s message formats;

� brand-specific rules for presence of optional fields;

� Certificate Authority (CA) functions, including:

� whether to use Geopolitical CAs (GCAs), which allow brand policies to vary from one
region to another as deemed necessary;

� rules for generating Certificate Revocation Lists (CRLs), including frequency, validity
periods, and the conditions under which an empty CRL may be required;

� interval for generating Brand CRL Identifier (BCI);
� whether a GCA or Payment Gateway CA (PCA) will handle CRL and BCI distribution

on behalf of the Brand CA (BCA);

� brand policies for issuance of certificates, including:

� whether a Cardholder certificate is required;
� verification requirements for certificate request data;
� for renewals, whether identification and authentication may be based on the use of the

previous certificate;

� certificate contents:

� both brand name and product in BrandID;
� choices available for Descriptive Name; and
� restrictions on validity periods;

� content and aging requirements for Cardholder, Merchant, and Payment Gateway
transaction logs;

� when a party has a right to deny participation in a SET transaction;

� requirements for use of hardware tokens.

Acquirer-
specific
requirements

Acquirers have specific requirements for Merchants interfacing with their Payment Gateway.
These requirements may be changed or expanded to accommodate SET. It is the
responsibility of the Merchant to determine what these requirements are.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 5

Draft Version 1.0.1

 Terminology

 Terminology Throughout this document:

 SET application Describes any software that supports electronic payment using the SET
protocol. This includes Cardholder, Merchant, Payment Gateway,
Acquirer, Issuer, and Certificate Authority software.

 payment card Refers to any of the following: credit card, debit card, charge card, and
bank card.

 shall Indicates a requirement that is imposed by SET (see also “Processing
steps” below).

 will Indicates either a goal or an implicit requirement that is imposed
something you can depend on that is external to SET.

 should Indicates a recommended course of action.

 must Indicates a requirement that is imposed external to SET, such as by
export requirements.

 validate In processing steps, means to compare the values that follow to ensure
that they match.

 end entity Cardholder, Merchant, or Payment Gateway

 input The first step of most SET processing sequences described in this book
lists the input to the processing sequence. With rare exceptions, the
DER-encoded representation of the data is intended. That is, the
processing sequences will not remind you to DER encode the data.

 Table 1: Terminology

Processing
steps

 In processing steps, “shall” is normally implicit. That is, unless otherwise indicated, an
instruction such as “verify x” is equivalent to “the application shall verify x.”

The sequence of processing steps may be varied as long as the results are the same. In the
event that more than one error condition applies to a given message, the Error message
generated may report any one of the errors, at the discretion of the application.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 6 as of December 10, 1998

Draft Version 1.0.1

 Chapter 1
Introduction

 Overview

 Introduction Chapter 1 provides background information and an overview of payment processing.

 Organization Chapter 1 includes the following sections:

 Section Title Contents Page

 1 Background Provides background information
with emphasis on the scope of SET.

 7

 2 Environment Processing
Overview

 Describes the environment for
processing payment card transactions
using SET.

 12

 3 Business Flows Provides a high-level description of
typical business flows relevant to
SET.

 16

 4 Capture Processing Provides an overview of capture
processing, including batch
processing.

 29

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 7

Draft Version 1.0.1

 Section 1
Background

 Overview

 Scope The scope of SET this document is limited to the payment process and the security services

necessary to support the payment aspects of the electronic shopping experience. To provide
these services, SET defines not only the electronic payment protocol, but also the certificate
management process.

 SET entities The SET system is composed of a collection of entities involved in electronic commerce.

These entities are listed in Table 2.

 Entity SET definition

 Cardholder An authorized user of a payment card supported by an Issuer,
and registered to perform electronic commerce; also, the
software that processes SET transactions for a cardholder.

 Merchant A party that provides goods, services, and/or information,
accepts payment for them electronically, and may provide
selling services and/or electronic delivery of items such as
information; also, the software that processes SET transactions
for a merchant.

 Issuer A financial institution that supports issuing payment card
products to individuals.

 Acquirer A financial institution that supports merchants by providing
service for processing payment card transactions.

 Payment Gateway A system that provides electronic commerce services to
merchants in support of an Acquirer, and interfaces with the
Acquirer to support the authorization and capture of
transactions.

 Brand A franchiser of payment systems and/or instruments.

 Certificate Authority (CA) An agent of one or more payment card brands that provides for
the creation and distribution of electronic certificates for
cardholders, merchants, and Payment Gateways.

 Payment card brand’s
financial network

 The existing private network operated by a payment card brand
that links Acquirers and Issuers.

Table 2: SET Entities

The responsibilities of these entities (other than Brands) are further described in
“Architecture” on page 38.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 8 as of December 10, 1998

Draft Version 1.0.1

Overview, continued

 End entities Three of the entities – Cardholder, Merchant, and Payment Gateway – are designated as end
entities, sometimes abbreviated EE.

 Entity
interaction

 Figure 1 depicts the interaction of the SET entities via SET messages.

Prerequisite Certification

Cardholder Merchant Payment
Gateway

Certificate Authority

Electronic Payment

 Figure 1: Entity Interaction via SET Messages

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 9

Draft Version 1.0.1

 Electronic Shopping

 Opportunities
and challenges

 The electronic commerce environment will provide new opportunities for merchants to
conduct business due to increased exposure and increased access by consumers to
information about their products and services. Consumers will be able to shop, access
information, and pay for goods and services electronically. Greater convenience is likely to
lead both to more purchases and to greater use of payment cards.

A standard protocol for electronic commerce has distinct political advantages as well.
Existing solutions are either domain-specific or country-limited. Because SET clearly
defines the application use of cryptography, more governments can exclude it from current
export/import restrictions, allowing a large, standard distribution of one payment protocol.

With these new opportunities, new challenges will need to be addressed in order to facilitate
secure payment processing for electronic shopping.

Currently, shoppers hesitate to send their account number and expiration dates over
electronic networks. They are concerned that:

� their transmissions may be intercepted and read by unauthorized parties;

� fraudulent charges will appear on their statements; and

� people pretending to be merchants will accept their orders, but never deliver the products
or services purchased.

Merchants and financial institutions are concerned that:

� electronic fraud will significantly increase the cost of processing transactions, and

� a maze of software will be developed to prevent fraud and will not support or interact with
their current payment systems.

 Phases Electronic shopping will typically include the phases shown in Figure 2. The order of the

phases is determined by the implementation.

• Browsing and Shopping
• Item Selection
• Negotiation and Ordering
• Payment Selection
• Payment Instruction Transmission
• Payment Authorization
• Optional Confirmation and Inquiry
• Delivery of Goods
• Merchant Reimbursement

Supported
by

SET

 Figure 2: Phases of Electronic Shopping

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 10 as of December 10, 1998

Draft Version 1.0.1

 Electronic Shopping, continued

 Processing Table 3 describes the phases of the electronic shopping model. Interactions between the

customer and the merchant can occur in either an interactive environment, such as the World
Wide Web, or through non-interactive means such as electronic or postal mail exchanges.
SET pertains to the phases that are shaded, and only in those instances in which a payment
card is selected as the means of payment.

 Phase Description

 1 The cardholder browses for items – tangible goods, electronic media (for
example, information, software, etc.), or services – described in a variety of
media, such as:

� an on-line catalog on a merchant’s World Wide Web page;
� a CD-ROM catalog supplied by the merchant; or
� a paper catalog.

 2 The cardholder selects items to be purchased from a merchant.

 3 The cardholder is presented with an order form containing the list of items, their
prices, and a total price including shipping, handling, and taxes.

 This order form may be delivered electronically from the merchant’s server or
created on the cardholder’s computer by electronic shopping software.

 Note: Some on-line merchants may also support the ability for a cardholder to
negotiate for the price of items (such as by presenting frequent shopper
identification or information about a competitor’s pricing).

 4 The cardholder selects the means of payment, including:

� a payment instrument (such as a specific payment card),

� a payment mechanism (such as SET), and

� in some cases, additional information - for example, to define installment
payments.

 Although SET processing normally begins after the means of payment has been
selected, a SET implementation may include payment selection.

 5 The Cardholder software sends the merchant a completed order along with a
means of payment.

 In SET, the order and the payment instructions are digitally signed by those
cardholders who possess certificates.

 6 The merchant checks inventory to determine if the goods and services ordered by
the customer are in stock or need to be backordered. If only part of the order is
currently in stock, the merchant may decide to handle the order as a split
shipment.

 Table 3: Phases of Electronic Shopping

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 11

Draft Version 1.0.1

Electronic Shopping, continued

Processing (continued)

 Phase Description

 7 The merchant requests payment authorization. In SET, the authorization is
obtained from the cardholder’s financial institution via the Payment Gateway. The
response includes an indication of whether the authorization request has been
approved or declined. (The request for payment shown in Step 10 may be
combined with this step.)

 8 Either, both, or neither of these may occur:

� If authorization succeeds, the Merchant may send confirmation of the order out
of band to SET.

� The cardholder may query the status of the order.

 9 The merchant delivers the goods or performs the services ordered. The delay
between authorization and shipment (which shall must precede capture) can
legitimately be several days. If goods are not available for immediate delivery, the
shipment is held up until the order can be fulfilled.

 10 The merchant requests submits a capture request to the Acquirer in order to obtain
payment. For transactions authorized using SET, the Merchant may request
payment from the cardholder’s financial institution:

� using SET, via the Payment Gateway; or
� using existing connections to the Acquirer.

 (This step may be combined with Step 7, the request for payment authorization.)

 11 Funds are transferred from the shopper’s payment card account to the merchant’s
account.

 12 If a credit is to be issued to a customer, such as when the goods are returned or
defective, the merchant sends a message to the Acquirer requesting that a credit be
issued to the cardholder’s account. For transactions authorized using SET, the
Merchant may request the credit:

� using SET, via the Payment Gateway; or
� using existing connections to the Acquirer.

Table 3: Phases of Electronic Shopping, continued

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 12 as of December 10, 1998

Draft Version 1.0.1

 Section 2
Environment Processing Overview

 Introduction

 Similarity to
mail order/
telephone order

 Before the advent of electronic commerce, payment card transactions typically followed one
of two patterns:

card present Customer physically presents a payment card to the
merchant.

Electronic processing of the payment begins with
the Merchant or the Acquirer.

Mail Order/Telephone Order
(MOTO)

Order and payment information is transmitted to
the merchant either by mail or by telephone.

Electronic processing of the payment begins with
the Merchant or the Acquirer.

The processing of transactions using SET generally follows that of the MOTO environment
except that:

SET Order and payment information is transmitted
electronically.

Electronic processing of the payment begins with
the Cardholder rather than the Merchant or the
Acquirer.

Table 4: Comparison of Payment Card Environments

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 13

Draft Version 1.0.1

Introduction, continued

 SET and MOTO Figure 3 illustrates how SET and MOTO complement one another.

Merchant Existing Financial Network

Acquirer

Issuer

Web Server Acquirer
Payment Gateway

Cardholder

Cardholder

Secure Electronic
Transaction

Mail Order/
Telephone Order

 Figure 3: SET / MOTO Comparison

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 14 as of December 10, 1998

Draft Version 1.0.1

 Introduction, continued

 Processing Table 5 is a description of a simplified MOTO processing model. There are many variations

on this processing model, but the table represents a typical exchange. See Table 3 on page 10
for a similar description of electronic processing.

 Phase Description

 1 The shopper (cardholder) receives a list of the goods and services offered by a
merchant, often in a paper catalog or other direct marketing mailing.

 2 The cardholder selects items to be purchased from this list.

 3 The cardholder either:

� prepares an order form, including the means of payment, and sends it to the
merchant, or

� provides the order and payment information to the merchant by telephone.

 4 The merchant checks inventory to determine if the goods and services ordered by
the customer are in stock or need to be backordered. If only part of the order is
currently in stock, the merchant may decide to handle the order as a split
shipment.

 5 The merchant sends an authorization request to its financial institution (Acquirer).
The Acquirer incorporates the authorization data into a request that is sent via a
payment network for processing by the financial institution (Issuer) that issued the
payment card to the cardholder. (An Acquirer may allow a merchant to combine
the authorization message with the capture message shown in Step 9.)

 6 The Issuer responds to the Acquirer via the payment card network with an
authorization response. The response includes an indication of whether the
authorization request has been approved or declined. The Acquirer responds to the
merchant with the outcome.

 7 The cardholder may query the status of the order.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 15

Draft Version 1.0.1

Introduction, continued

Processing (continued)

 Phase Description

 8 The merchant delivers the goods or performs the services ordered. The delay
between authorization and shipment (which shall must precede capture) can
legitimately be several days. Many MOTO merchants are not able to check
inventory before authorization. If goods are not available for immediate delivery,
the shipment is held up until the order can be fulfilled.

 9 The merchant submits a capture request to the Acquirer in order to obtain
payment. This request is sent through the payment card network to the Issuer. (An
Acquirer may allow a merchant to combine the capture message with the
authorization message shown in Step 5.)

 10 Funds are transferred from the shopper’s payment card account to the merchant’s
account.

 11 If a credit is to be issued to a customer, such as when the goods are returned or
defective, the merchant sends a message to the Acquirer requesting that a credit be
issued to the cardholder’s account.

 Table 5: Phases of MOTO Shopping

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 16 as of December 10, 1998

Draft Version 1.0.1

 Section 3
Business Flows

 Overview

 Purpose This section provides a high-level description of typical business flows relevant to SET.

 Introduction A SET purchasing transaction generally follows the MOTO process described in Section 2.

The purpose of SET is to allow a similar exchange to take place electronically in a manner
that ensures the security of the shopper’s payment card account information.

 There are a number of different ways a purchase transaction can progress. This section
describes several business flow variations.

 Transaction
variations

 The purchase transaction may vary depending on the shopper’s preferences and the
merchant’s business situation. For example:

� The shopper may want to pay in installments.

� The order may be for tangible goods and the merchant may be out of stock on one or more
of the items ordered, but able to ship the rest.

� The order may be for non-tangible goods, such as a video clip that can be delivered
electronically – in which case the merchant can immediately process both the authorization
and the capture request.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 17

Draft Version 1.0.1

 Basic Business Functions

 Basic business
functions

 SET is designed to support all these basic functions.

 Payment Instructions
(PI)

 The shopper, usually while filling out the order form, indicates
how payment is to be made. Typically this will be by specifying
a payment card brand and account number with expiration date.
The SET protocol allows the shopper’s payment card account
number and expiration date to be encrypted and included with
the order automatically.

 Payment Instructions may include some variations. SET allows
the shopper to request recurring and installment payments, if
they are offered by the merchant.

 Authorization Request
(AuthReq)

 Before a merchant fills a payment card order, payment must be
authorized by the Issuer of the payment card. The Issuer verifies
that the account number is valid and that the purchase is within
the credit limit or available funds of the account.

 Payment Capture
(CapReq)

 Once the goods are shipped or the services are performed, the
Merchant sends a request to be paid from the shopper’s account.
Payment capture can be handled in a number of ways.
Sometimes a capture request is sent along with the authorization
request. Often merchants send several requests at the same time;
this is known as batch processing and is described further on
page 32.

 Subsequent
Authorization
(subsequentAuthInd)

 If a transaction cannot be completed as authorized – for example,
if part of the order is out of stock – a subsequent authorization
indicator is used to tell the system that there is a business need
for another authorization using the same account information as
is contained in the original AuthReq . In this case the Payment
Gateway will return an AuthToken that may be used when
requesting authorization for the remaining parts of the order.

 Authorization Reversal
(AuthRevReq)

 If a mistake is made in the AuthReq message or the amount of
the authorization needs to be changed – for example if some of
the goods ordered need to be back-ordered – the Merchant
software may send an authorization reversal for all or part of the
original authorization.

 Credit Request
(CredReq)

 If the shopper cancels the order or returns the goods to the
merchant, the Merchant software sends a credit request so that a
credit may be posted to the shopper’s account.

 Table 6: Basic Business Functions

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 18 as of December 10, 1998

Draft Version 1.0.1

 Transaction Identification Alternatives

 Alternatives to
account
numbers

 SET Cardholder payment system messages are sent to the Merchant but include the
Cardholder account number encrypted in such a way that the Merchant cannot read it. The
Merchant passes the encrypted data to the Payment Gateway, which decrypts it to determine
the account number, so that the account number can be used in transactions sent to non-SET
systems (for example, for clearing).

 When issuing Merchant certificates, the Acquirer sets a flag that indicates whether the
Merchant may receive the cardholder account number as part of a response. If the Acquirer
does not return the account number, it needs to ensure that the Merchant has an alternative
means of identifying the transaction for business processing of non-SET messages from the
Issuer (such as a request for copy or charge back).

 Note: These messages may be identified by the Issuer using the Acquirer Reference Number
assigned by the Acquirer, which has no equivalent in SET.

Table 7 lists a number of fields other than the account number that can be used for
transaction identification. Each implementation will determine the field(s) to use.

 Field Included in

data structure
 Definition

 unique by
transaction

 xid TransIDs

 MessageWrapper

 TransStain

 20-byte number that uniquely identifies the
transaction, including all authorization, and
clearing capture, credit, and reversal messages
for a single order

 lid-M TransIDs

 MessageWrapper

 (also PInitReq)

 1- to 20-byte local identifier assigned to the
transaction by the Merchant software.

 Depending on the implementation, this may be
a tracking number assigned by staff operating
the system or an internal number used solely by
the Merchant software.

 merOrderNum SaleDetail 1- to 25-byte merchant order number

 unique by
authorization

 paySysID TransIDs (optional) 1- to 64-byte payment system transaction
identifier

 authRRPID RRTags , among
others

 A statistically unique 20-byte number that
uniquely identifies a request/response pair – a
single authorization or clearing message

 unique by
request/response

pair

 rrpid Message Wrapper
and RRTags , among
others

 A statistically unique 20-byte number that
uniquely identifies a request/response pair – a
single authorization or clearing message

 Table 7: Transaction Identification Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 19

Draft Version 1.0.1

Transaction Identification Alternatives, continued

Not unique by
transaction

PaySysID and AuthRRPID are unique by authorization request. Therefore for a transaction
with split shipments or recurring payments, these fields will have multiple values.

RRPID is unique by request/response pair. Therefore a transaction will have many RRPIDs
– one for each authorization, capture, credit, reversal, etc.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 20 as of December 10, 1998

Draft Version 1.0.1

 Typical Business Scenarios

 Overview This section illustrates a range of typical business scenarios that are enabled by SET

processing according to the specific circumstances of a purchase.

 Overall business flows are illustrated in Figure 4 on page 22. After that, descriptions of the
following scenarios are included:

� Authorize now and capture later (the most typical scenario)
� Authorize and capture now: Sale Request
� Split shipment
� Installment and recurring payments
� Credit for an old transaction

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 21

Draft Version 1.0.1

 Typical Business Scenarios, continued

 Business flows Figure 4 is a state diagram that illustrates SET business flow messages. It shows, at a high
level, the transitions from shopping to ordering and processing of the order, with the
processed state shown in two variations:

� sale processed in the case of an order that is authorized and captured at the same time, and

� captured for an order that is authorized now and captured later.

 The figure also shows the processing of a credit from both of these states.

 The message pairs are implicit in this diagram; for example, AuthReq represents both the
authorization request and the response message.

 In this scenario, there are transitions from one state to another – for example, from the
ordered state to the sale processed state. Once the PReq message is processed, any transition
that follows it can be reversed, with the effect of returning to the previous state. For example,
when receiving an order, the merchant submits an authorization request; a subsequent
authorization reversal request would take the transaction back to the ordered state. There is
one exception: A partial authorization reversal (to specify a new amount) leaves the
transaction in the authorized state.

Shopping

Ordered

Sale Processed

Credit Issued

Authorized
Captured

PReq

AuthRevRe q , new $
(partial reversal)

CredRevRe q

Cap Req

AuthRevRe q

AuthRevRe q

CredRevRe q

Cap RevRe q
CredRe q

CredRe q

AuthRe q

AuthRe q , Cap tureNow
(Sale Request)

 Figure 4: Business Flows

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 22 as of December 10, 1998

Draft Version 1.0.1

Typical Business Scenarios, continued

 Authorize now
and capture
later

 The most typical on-line purchase is one in which the merchant is ready to authorize the
transaction now, but wants to submit the capture request later. For example, many merchants
prefer to submit their capture requests in batches at the end of the business day.

Purchase Request
(PReq)

After the shopper creates an order, the Cardholder software sends the
Purchase Request (PReq) to the Merchant. This message and its
response encompass the actual payment between the Cardholder and
the Merchant, and take the cardholder from the shopping state to the
ordered state. The PReq includes:

� the Order Instruction (OI) from the Cardholder for the Merchant,
and

� the Payment Instruction (PI) from the Cardholder, encrypted and
tunneled through the Merchant to the Payment Gateway.

Purchase Response
(PRes)

The Merchant may sent the Purchase Response to the Cardholder
immediately or at any time later in the protocol. The information
returned will depend on the processing that has occurred when the
PReq is returned – for example, order received, transaction
authorized, or transaction captured.

Authorization
Request
(AuthReq)

The Merchant sends an Authorization Request to the Payment
Gateway, but does not set the CaptureNow flag to TRUE, as a
capture request will be processed later. The AuthReq indicates
whether the merchant expects to do another authorization for a split
shipment, recurring payment, or installment payment (discussed later
in this section).

Authorization
Reversal Request
(AuthRevReq)

If a full authorization reversal is needed, it will return the transaction
to the ordered state.

A partial authorization reversal may be used to change the amount
after the authorization, leaving the transaction in the authorized state.
For example, the amount might be changed if the merchant checks
inventory and finds the entire order cannot be shipped together.

Note: Some payment brands do not support partial authorization
reversals; in this case, the Payment Gateway indicates “success” , but
does not actually send a message to the financial network.

(table continues)

Table 8: Authorize Now and Capture Later

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 23

Draft Version 1.0.1

Typical Business Scenarios, continued

Authorize now and capture later (continued)

Capture Request
(CapReq)

The merchant now has a commitment for payment from the Issuer,
but will need to process the capture request in order to be paid. The
capture request may include multiple capture items. It includes a
capture token if one is provided in the authorization response.

Credit Request
(CredReq)

Later, the cardholder may request (or the merchant may decide to
issue) a credit for the order – for example, if the cardholder returns
the order because it was damaged in shipment. In this case a credit
request is processed, moving the transaction from the sale processed
state to the credit issued state.

Unlike a capture reversal, a credit request is processed after an order
is completed and shipped, and results in a credit on the cardholder’s
statement.

Table 8: Authorize Now and Capture Later, continued

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 24 as of December 10, 1998

Draft Version 1.0.1

 Typical Business Scenarios, continued

 Authorize and
capture now:
Sale Request

A Sale Request is used:

� when the Merchant knows the item ordered is in stock and can be shipped right away, if
the authorization is approved; or

� for purchase of non-tangible goods available electronically – such as video clips,
encyclopedia pages, and software programs – for which there is no question of inventory,
so the order can be fulfilled immediately.

Purchase Request
and Response
(PReq and PRes)

As in Table 8 on page 23.

Authorization
Request
(AuthReq)

SET allows a merchant to process the transaction as a single message
by setting the CaptureNow flag in the Authorization Request to
TRUE. This indicates that if the transaction is authorized, the capture
should be done now, as well. In effect, it is a combined authorization
and capture clearing.

Authorization
Response
(AuthRes)

When the Payment Gateway processes the request, there is a
transition to the sale processed state. From a financial perspective,
the sale processed state is equivalent to the captured state discussed
on page 22.

Authorization
Reversal Request
(AuthRevReq)

If the amount of the transaction is in error, a full authorization
reversal with the CaptureNow flag set is performed. Unlike the
authorize now and capture later scenario, there are no partial
reversals.

No Capture Request (CapReq) is submitted,
as the capture was accomplished in the AuthReq .

Credit Request
(CredReq)

As in Table 8 on page 23.

Table 9: Authorize and Capture Now: Sale Request

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 25

Draft Version 1.0.1

 Typical Business Scenarios, continued

 Split shipment When the merchant cannot fulfill the entire order, the items in stock are shipped and the

remaining items are back-ordered. Processing varies depending on whether the need for the
split shipment is known at the time of authorization, as described in Table 10.

 In either case, an Authorization Token (AuthToken) is used to enable subsequent
authorizations. AuthToken serves the same purpose as the Payment Instruction, except that
it originates with the Payment Gateway and is a means of allowing one additional
authorization.

If the need for a split shipment is
known at the time of
authorization – for example,
when inventory information is
available:

If the need for a split shipment is
determined after the initial
authorization:

Purchase Request
and Response
(PReq and PRes)

As in Table 8 on page 23.

Authorization
Request
(AuthReq)

The Merchant sets
SubsequentAuthInd in the
initial Authorization Request to
indicate a business need for a
subsequent authorization.

The Merchant submits a normal
Authorization Request:

� without SubsequentAuthInd
(since the need for a subsequent
authorization is not known), and

� without CaptureNow (which, as
described on page 25, is used only
when the Merchant is sure there
will be no need for a split
shipment).

Authorization
Response
(AuthRes)

The Payment Gateway returns an
Authorization Token
(AuthToken) in the
Authorization Response.

The Payment Gateway returns a
normal Authorization Response
(without AuthToken).

Authorization
Reversal Request
(AuthRevReq)

Once the need for a split shipment is
determined, the Merchant sends a
partial Authorization Reversal
Request; it includes a capture token
to be used for the subsequent
authorization and capture with
SubsequentAuthInd set.

Authorization
Reversal Response
(AuthRevRes)

The Payment Gateway returns an
AuthToken in the Authorization
Reversal Response.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 26 as of December 10, 1998

Draft Version 1.0.1

Typical Business Scenarios, continued

Split shipment (continued)

If the need for a split shipment is
known at the time of
authorization – for example,
when inventory information is
available:

If the need for a split shipment is
determined after the initial
authorization:

Authorization
Request
(AuthReq)

When the remainder of the order is ready, the Merchant submits another
AuthReq including the AuthToken returned in the AuthRes or
AuthRevRes .

If the order must be further split, the Merchant sets the
SubsequentAuthInd in the new AuthReq to obtain an AuthToken
for one additional authorization. This process can be repeated as many
times as necessary. A new AuthToken is required for each subsequent
authorization.

Capture Request
(CapReq)

The capture request for each partial shipment is processed normally.

Credit Request
(CredReq)

Again, if there is a need to return money to the cardholder, a credit
request moves the transaction into the credit issued state.

Table 10: Split Shipment

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 27

Draft Version 1.0.1

 Typical Business Scenarios, continued

 Installment and
recurring
payments

 The merchant may offer customers the option of paying in installments – for example, three
monthly payments. Or, the merchant may offer to process payments on a regular basis – for
example, an Internet service provider may offer to bill the cardholder’s account for the
monthly service charge with no action needed by the cardholder.

Purchase Request
(PReq)

The Merchant presents the installment or recurring payment option,
which is then indicated by the cardholder in the PReq message.
Usually, the payment instruction from the cardholder may only be
used for one authorization request; thus, it is necessary for the
shopper to indicate explicitly that the Merchant will need multiple
authorizations.

Authorization
Request
(AuthReq)

The Merchant sets the subsequent authorization indicator to alert the
system that there is a business need for subsequent authorization. The
Merchant passes the installment or recurring payment data from the
Cardholder to the Payment Gateway.

Authorization
Response
(AuthRes)

The Payment Gateway returns an AuthToken in the Authorization
Response, which will allow one additional authorization. As each
AuthReq is processed, the Payment Gateway includes an
AuthToken for the next authorization – until the authorization for
the final installment is processed, when no AuthToken is returned.

 Credit for an
old transaction

 Individual Acquirers will establish recommended times for data to be retained by their
merchants. However, a cardholder may request a credit after all data relating to the original
transaction has been purged from the Merchant’s logs. SET supports the processing of a
credit when the Merchant no longer has the information about the original transaction – in
this case, an operator will need to manually enter the credit data.

 Credit to a
different
account

 SET also supports the processing of a credit to a different account than that used to pay for
the order – for example, if a cardholder returns a gift and requests a credit to their account,
rather than to the account of the person who purchased the gift. In this case, an operator will
need to manually enter the account information.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 28 as of December 10, 1998

Draft Version 1.0.1

 Section 4
Capture Processing

 Overview

 Purpose This section provides a high-level description of the optional capture processing models

relevant to SET.

 Organization This section includes the following topics:

� Overview of Capture Processing
� Capture Processing Guidelines
� Batch Processing Overview
� Merchant Batch Processing
� Payment Gateway Batch Processing

Terminology The following terms are used to refer to the process of requesting payment from the

cardholder’s financial institution.

 capture the exchange of messages between the Merchant and the Acquirer

 clearing the exchange of messages between the Acquirer and the Issuer over a
financial network

 settlement the transfer of funds between the Issuer and the Acquirer

Scope SET provides a mechanism for capture processing as well as for reporting on clearing and
settlement activities.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 29

Draft Version 1.0.1

 Overview of Capture Processing

 Introduction SET capture processing recognizes the following options:

Connectivity � a Payment Gateway connected to an Acquirer host,
� a Payment Gateway connected to an intermediate capture system, and
� processing performed out-of-band to SET.

Accounting � Merchant/Acquirer accounting through batches, and
� Merchant/Acquirer accounting through out-of-band mechanisms.

Batch control � batches controlled by the Merchant, and
� batches controlled by the Acquirer or Payment Gateway

Credits � credits for the full amount of the transaction,
� credits for a partial amount of the transaction,
� credits processed after transaction data has aged off logs, and
� credits processed for a different account number.

 Out-of-band
capture
requests

For merchants processing capture requests out-of-band to SET, the Authorization Response
(AuthRes) must include all data necessary to clear the transaction at the best available
interchange rate, based on the characteristics of the authorization.

 In particular, if the merchant does not receive the cardholder account information in the
AuthRes , the Acquirer must provide a mechanism to add that information to capture
requests that are received out-of-band to SET. See Table 7 on page 18 for possible
transaction identification data.

Merchant/
Acquirer
accounting

SET provides explicit support for Merchant/Acquirer accounting through the use of capture
batches to combine transactions for reconciliation and reporting. Other mechanisms must be
supported out-of-band to SET or through message extensions.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 30 as of December 10, 1998

Draft Version 1.0.1

Capture Processing Guidelines

Ship before
capture

In general, the merchant software should not submit an item into capture until the ordered
goods have been shipped. There are exceptions: Payment brand rules may permit capture
before shipment of goods such as a custom-built computer.

Capture all
items

The merchant software should ensure that all authorized items are either submitted for
capture or reversed. If the software has on-line access to order status so that it can determine
when an order has shipped or been canceled, it can perform this processing automatically. If
it does not have such access, it must depend on manual input from a user to determine when
items should be captured or reversed.

Capture
amount

The capture amount may be different than the authorization amount. Payment brand and
Acquirer rules will determine the allowable difference.

Capture
request
analysis

The merchant can submit multiple items for a single payment brand in a capture request. The
Payment Gateway will analyze each item and will accept or reject each item. The items that
are accepted will be submitted by the Payment Gateway to the Acquirer for processing. The
merchant must determine the action to take on any item that is rejected.

Reversals
correct errors

The merchant must submit a CapRevReq or CredRevReq to correct processing errors for
a capture or credit request.

Note: There are no partial capture or credit reversals; the amount of a reversal is always the
same as the amount of the corresponding request. This applies even if the capture was
accomplished via AuthReq with CaptureNow . In this case the Merchant submits
AuthRevReq (with CaptureNow) for the full amount.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 31

Draft Version 1.0.1

Batch Processing Overview

 Identifying
batches

 The Merchant, Payment Gateway, or Acquirer assigns each SET transaction to a specific
capture batch and also:

� assigns an integer to identify the batch, and
� optionally assigns a unique integer to identify each item within the batch.

 Access to
batches

 A capture batch may be opened by the Merchant, Acquirer, or Payment Gateway.

 If a batch is opened by the Acquirer or Payment Gateway, it shall be closed only by that
Acquirer or Payment Gateway.

If a batch is opened by the Merchant, it may be closed by the Merchant, Acquirer, or
Payment Gateway.

 Batch contents A batch contains capture items and credit items, which are added using CapReq or

AuthReq with CaptureNow and CredReq respectively. Items are removed from the batch
using CapRevReq , AuthRevReq with CaptureNow , and CredRevReq .

In rare circumstances, an item may be reversed after the batch has been closed, in which case
the reversed item will appear in another batch with a negative amount.

 The merchant can remove all items from an open batch by issuing a purge operation using
BatchAdminReq .

Reasons to use
a batch

A capture batch provides a convenient mechanism to group transactions, such as to group:

� all transactions for a period of time;
� all transactions for a specific payment brand;
� items for accounting purposes; and
� items for reporting and reconciliation purposes.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 32 as of December 10, 1998

Draft Version 1.0.1

Batch Processing Overview, continued

 Merchant
inquiries

 The Merchant can use BatchAdminReq to inquire of the Acquirer or Payment Gateway to
determine the status of:

� a batch and the items within a batch, and

� the transmission of batch information from the Payment Gateway to the first non-SET
system.

 The Merchant can send or receive batch totals and transaction detail to (or from) the Acquirer
or Payment Gateway.

Batch
transaction
detail

The Merchant can use BatchAdminReq to request transaction detail. The Payment
Gateway can also return transaction detail in a Capture Response (CapRes) message.

When the transaction detail is generated by the Payment Gateway, it will contain an entry for
each item in the batch that:

� has been captured using AuthReq with CaptureNow set to TRUE and has not
subsequently been reversed using AuthRevReq ;

� has been captured using CapReq and has not subsequently been reversed using
CapRevReq ;

� has been credited using CredReq and has not subsequently been reversed using
CredRevReq ;

� has been reversed using CapRevReq or CredRevReq after the item has already been
submitted for clearing.

Note: A negative amount is returned for an item that has been reversed after clearing.

 Batch
balancing

Batch balancing may be performed by the Merchant after requesting batch detail from the
Payment Gateway, or by the Payment Gateway on receipt of batch detail from the Merchant.

 Batch balancing is performed by the merchant by adding the transaction amounts receipts at
the point of service and comparing that total to the batch total(s) at the host. If the amounts
are the same, the batch balances. If the amount differs, the merchant may be able to examine
each transaction through a look-up based on account number, transaction ID, amount, or
various combinations of those elements. the individual transactions are examined to identify
the source of the discrepancy.

Note: Topics Terminal Data Capture and Host Data Capture were deleted completely.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 33

Draft Version 1.0.1

Merchant Batch Processing

Processing
models

A Merchant can submit items for capture using:

� AuthReq with CaptureNow set to TRUE;
� CapReq for capture items; and
� CredReq for credit items.

Batch
administration

A merchant can use BatchAdminReq to administer the batch or request information about
it. The functions available are:

open The Merchant uses this function to open a new batch. If the merchant is
assigning batch numbers, the value is specified; otherwise, the Payment
Gateway will assign the batch number and return the value in the
response.

purge The Merchant uses this function to purge all items in an open batch.
Most often this function is used when the Merchant is unable to
reconcile batch totals.

close The Merchant uses this function to close an open batch. Once the batch
has been closed no items can be added to it, so the Merchant should
ensure that there are no outstanding requests for items in the batch.
(Subsequent requests for the same transactions – such as the
authorization of a recurring payment – may, of course, be put into
subsequent batches.)

request summary
detail information

The Merchant uses this function to request transaction amount totals for
all items in the batch.

request transaction
detail

The Merchant uses this function to request transaction detail for each
item in the batch.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 34 as of December 10, 1998

Draft Version 1.0.1

Payment Gateway Batch Processing

Processing
models

A Payment Gateway shall process items submitted for capture by a Merchant using:

� AuthReq with CaptureNow set to TRUE;
� CapReq for capture items; and
� CredReq for credit items.

Authorize and
capture now

When the Merchant sends an AuthReq with the CaptureNow flag set to TRUE, the
Payment Gateway shall either:

� submit a full financial transaction (one that both authorizes and settles) to the Acquirer host
for processing through a financial network; or

� submit an authorization request to the Acquirer host for processing through a financial
network; if the authorization request is approved, the Payment Gateway shall continue to
process the transaction as though a CapReq had been submitted by the Merchant for that
transaction.

Authorize now
and capture
later

When the Merchant sends a CapReq or CredReq message, the Payment Gateway shall
validate each item in the request to ensure that it has been authorized through the Payment
Gateway and that the contents of the item are valid.

For those items that are valid, the Payment Gateway shall process each item so that it can be
cleared through the Acquirer host. Depending on the processing model of the Acquirer, the
items may be transmitted immediately or stored in a transaction database for later
transmission. If the items are stored in a transaction database, they are sent to the Acquirer
host after the batch is closed.

The Payment Gateway sends the corresponding CapRes or CredRes as soon as the items
in the request have been validated.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 35

Draft Version 1.0.1

Payment Gateway Batch Processing, continued

Use of capture
token

The Payment Gateway may return a CapToken to the Merchant on an authorization
response. The contents of the token are defined by each Payment Gateway vendor based on
its own processing requirements. It will contain the account information and authorization-
related data necessary to process capture and credit requests.

Many Payment Gateway implementations will maintain a transaction database that contains
information about approved and captured items. In these situations, the CapToken will not
be necessary for normal transaction processing. However, the Payment Gateway vendor may
still choose to return a CapToken to support processing of credit requests that occur long
after the original capture item is processed.

SET processing rules require the Payment Gateway to validate that the Merchant submits the
correct CapToken . If the Payment Gateway does not require the token to process the
transaction, it can avoid the processing overhead of decrypting the token by comparing a
hash of the encrypted token against a hash that is stored in the transaction database when the
token is created.

Data
augmentation

The Payment Gateway must ensure that the Acquirer host has all data elements necessary to
clear a transaction. If the Acquirer host does not maintain its own transaction database, the
Payment Gateway can access this data by:

� storing the data elements in a transaction database;
� obtaining the information in the capture and credit requests from the Merchant; or
� obtaining the information from a CapToken .

Batch
administration

The Payment Gateway shall process batch administration requests from the Merchant by
performing the following actions:

open The Payment Gateway will open a new batch. If the Merchant is not
assigning batch numbers, the Payment Gateway will assign the batch
number and return the value in the response.

purge The Payment Gateway will remove all items related to the batch from its
transaction database or will instruct the Acquirer host to purge the batch.

close The Payment Gateway will close the batch. If the Payment Gateway has
been storing the items in a transaction database, it will transmit the items
to the Acquirer host.

request summary
detail

The Payment Gateway will return transaction amount totals for all items
in the batch.

request transaction
detail

The Payment Gateway will return transaction detail for each item in the
batch.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 36 as of December 10, 1998

Draft Version 1.0.1

 Chapter 2
System Architecture

 Overview

 Introduction Chapter 2 provides an overview of the system architecture.

 Organization Chapter 2 includes the following sections:

 Section Title Contents Page

 1 System Overview Provides a high-level overview of the
SET architecture.

 38

 2 Security Services Describes the security features
provided by SET and the certificates
and certificate controls provided to
implement them.

 45

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 37

Draft Version 1.0.1

 Section 1
System Overview

 Architecture

 Protection of
information

 The architecture of SET is designed to protect the transmission of financial information
involved with a payment transaction between a cardholder, a merchant, and an Acquirer. It
does not impose requirements on the transmission of the transaction’s order information.
Vendors developing shopping and ordering applications and protocols are strongly
encouraged to protect this order information.

Tamper
resistant
hardware

Tamper resistant means the device itself is protected against intrusion. ISO 9564-1:1991 calls
it a “physically secure device” and defines it as follows:

“A physically secure device is a hardware device which when operated in its intended
manner and environment cannot be successfully penetrated to disclose all or part of any
cryptographic key or PIN resident within the device.

Penetration of the device when operated in its intended manner and environment shall
cause the automatic and immediate erasure of all PINs, cryptographic keys and all useful
residue of PINs and keys contained within the device.

A device shall only be operated as a physically secure device when it can be assured that
the device's internal operation has not been modified to allow penetration (e.g. the
insertion within the device of an active or passive ‘ tapping’ mechanism).”

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 38 as of December 10, 1998

Draft Version 1.0.1

 Architecture, continued

 SET Cardholder The SET Cardholder is represented in SET by a computer. This provides the cardholder with
the flexibility to shop and conduct negotiations with Merchant systems offering items for sale.
The computer may support all phases of the electronic shopping model described on page 10.
In supporting SET, the computer has the functionality to support the payment process.

 Cardholder
interfaces

 The Cardholder software’s primary interface in SET is to Merchant systems. This interface
supports the Cardholder’s portion of the payment protocol, which enables the user to initiate
payment, perform inquiries, and receive order acknowledgment and status.

 The Cardholder software also has an indirect interface to the Acquirer through the Merchant
system. This interface shall support encrypted data fields that are sent via the Merchant to the
Acquirer, but can only be decrypted by the Payment Gateway. This enables the Acquirer to
mediate interactions between the Cardholder and Merchant, and by so doing to provide
security services to the cardholder. These security services ensure that the cardholder is dealing
with a valid, payment-card-approved merchant.

 Depending on the policies established by the payment card brand, the Cardholder software
may also interface with a Cardholder CA (CCA) to request and renew public-key certificates
that support electronic commerce security functions.

 Cardholder
functions

 Cardholder software shall support:

� security services – integrity, authentication, and certificate management as prescribed by
SET, and

� communications functions.

It may also support shopping and payment selection.

Performing cryptographic functions in hardware cryptographic modules is recommended, but
not required. Secret-key generation and storage using tamper resistant hardware cryptographic
modules such as smart cards is encouraged.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 39

Draft Version 1.0.1

 Architecture, continued

 Merchant
interfaces

 SET Merchant software provides a convenient interface to the Cardholder for the support of
electronic payments. In addition, the Merchant interfaces with the Acquirer using the payment
protocol to receive authorization and capture services for electronic payment transactions. The
Merchant shall interface with the Merchant CA (MCA) to request and renew public-key
certificates that support electronic commerce security functions.

 Merchant
functions

 Merchant software shall support:

� SET protocols for the authorization of electronic commerce transactions initiated by the
Cardholder;

� security services: integrity, authentication, and certificate management; and

� the shopping, payment selection, and communications functions.

It is expected that the Merchant system will also support captures.

 Performing cryptographic functions in hardware cryptographic modules is strongly
recommended, but not required. Secret key generation and storage using tamper resistant
hardware cryptographic modules such as smart cards is strongly encouraged. Payment card
brand requirements for a specific implementation and environment in which the merchant
server may operate will dictate requirements for the use of hardware cryptographic support.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 40 as of December 10, 1998

Draft Version 1.0.1

 Architecture, continued

 Issuer An Issuer is the financial institution that establishes an account for a cardholder and issues the

payment card. The Issuer guarantees payment for authorized transactions using the payment
card.

 The processing and interface to the Issuer is out-of-band from the perspective of SET.

 Acquirer An Acquirer is the financial institution (or its agent) that supports merchant activity through

account relationships with merchants.

 The Acquirer is responsible for gathering financial data related to payment card transactions in
order to obtain authorization for payment from the cardholder’s Issuer.

 Payment
Gateway

 The Payment Gateway system is operated on behalf of the Acquirer to provide electronic
commerce services to merchants in support of the Acquirer.

 The Payment Gateway shall support:

� interface with the payment card brand’s financial network to support the authorization and
capture of transactions;

� interface with the Payment Gateway CA (PCA) to request and renew public-key
certificates to support the electronic commerce security functions; and

� distribution of Certificate Revocation Lists (CRLs) and Brand CRL Identifiers (BCIs).

The Payment Gateway’s interface to the payment card brand’s financial network is largely
unchanged from the interface supporting Acquirers today.

 Cryptographic functions shall be performed in hardware cryptographic modules. Secret key
generation and storage shall use tamper resistant hardware cryptographic modules.

 Third party
processor

 In some environments, Issuers and Acquirers may choose to assign the processing of
payment card transactions to third-party processors. SET does not distinguish between the
financial institution and the processor of the transactions.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 41

Draft Version 1.0.1

 Architecture, continued

 Certificate
Authority

 The architecture of SET defines a trusted hierarchy of Certificate Authority (CA) systems that
begins with a Root CA (RCA), then a brand-specific CA (BCA) and an optional Geopolitical
CA (GCA). At the bottom level, one or more trusted CAs support the issuance and renewal of
public-key certificates for cardholders, merchants, and Acquirers. For example, Cardholder
Certificate Authorities (CCAs) interface with Issuers to authenticate requests for Cardholder
certificates.

CA certificates are issued by the superior CA in the SET hierarchy, as described in Table 11.

These CAs: ...issue certificates for these CAs:

Root CA Brand CA

Brand CA Geopolitical CA

if no Geopolitical CA:

� Cardholder CA
� Merchant CA
� Payment Gateway CA

Geopolitical CA (if one exists for the
Cardholder, Merchant, or Payment
Gateway CA’s area)

Cardholder CA

Merchant CA

Payment Gateway CA

Table 11: Certificate Issuance

 Certificate
Authority
functions

 Cryptographic functions shall be performed in hardware cryptographic modules. Secret key
generation and storage shall use tamper resistant hardware cryptographic modules. Certificate
management shall be performed in a secure physical environment compliant with payment
card brand standards.

Part II, starting on page Error! Bookmark not defined. , provides a detailed explanation of
certificates and certificate formats, certificate issuance and renewal, CRLs, and other
certificate management functions. See also “Certificates” on page 47 and “CRLs and Brand
CRL Identifiers” on page 51.

 Payment card
brand’s
financial
network

 The payment card brand’s financial network is the existing private network through which
Acquirers obtain authorization for payment from Issuers. (VisaNet and Banknet are examples
of these types of networks.) These networks are protected by each payment card brand and
provide messaging interfaces (such as ISO 8583 formatted messages).

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 42 as of December 10, 1998

Draft Version 1.0.1

Architecture, continued

 Transport
mechanisms

Two classes of transport mechanisms are recognized: interactive and non-interactive. The
World Wide Web is an interactive mechanism, and electronic or postal mail are non-
interactive mechanisms.

The SET specification does not define how a SET message is transported between entities.
SET messages may be transported using any mechanism agreed upon by the sender and
receiver.

 It is expected that transport standards will be developed to address the issue of interoperable
communication interoperability between SET applications. Until such standards are
available, SETCo provides an interim standard in the SET External Interface Guide. (See
“Related documentation” in the Preface.)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 43

Draft Version 1.0.1

Architecture, continued

Data storage The processing descriptions later in SET Book 2: Programmer’s Guide presume the
following logical distinctions in data storage. (The physical implementation of these
databases is beyond the scope of SET.)

message databaseThe message database includes:
� unsigned and unencrypted data structures, and

� if a message is idempotent, the complete signed and/or encrypted
message.

Items remain in the message database while messages are being
exchanged (for example, a Cardholder’s certificate request, including
CardCInit Req, RegForm Req, and CertReq); once the series of
messages is complete, the database entries have served their usefulness.

Only parts of messages may actually be stored in the message database.
It is the application’s responsibility to be able to retrieve all relevant
data. In particular, things like BrandCRLIdentifier do not need to be
stored in the message database.

transaction
database

Includes significant data for a transaction (that is, for all messages linked
by an XID). Both current state and significant previous states are stored.

The transaction database lives much longer than the message database;
the Merchant may have to retain purchase information for months in
able to process credits correctly. However, transaction information will
not be stored by SET software indefinitely. Operational guidelines of
payment card brands and Acquirers will specify minimum time periods
that information must be stored on Merchant and Payment Gateway
systems.

secure data storageApplies to Cardholder applications only: Includes data whose
confidentiality and security requires particular care, such as payment
card numbers, expiration dates, and private keys. For further detail, see
“Secure Data Storage” on page 107.

trusted cache Includes certificates, Certificate Revocation Lists (CRLs), and Brand
CRL Identifiers (BCIs) that have been validated and have not expired,
along with their Thumbprints. (See “Thumbprints” on page 68.)

untrusted cache Includes certificates, CRLs, and BCIs that have not been validated.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 44 as of December 10, 1998

Draft Version 1.0.1

 Section 2
Security Services

 Overview

 Purpose This section provides a brief summary of fundamental security services provided in the

architecture of SET and the certificates used to implement them.

 Organization This section includes the following topics:

� Services
� Certificates
� CRLs and Brand CRL Identifiers

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 45

Draft Version 1.0.1

 Services

 Integrity SET provides integrity to ensure that a message was not modified in transit by using:

� one-way cryptographic hashing algorithms,

� digital signatures, and

� a linkage mechanism for verifying that a message contains a reference to another message
by verifying an embedded link using a (when necessary for additional integrity) one-way
cryptographic hashing algorithms to cryptographically link one message to another.

 Authentication SET provides authentication of a message’s origin by using digital signature verification

algorithms when signature certificates are available.

 Confidentiality SET provides confidentiality by using both asymmetric and symmetric-key algorithms to

protect financial information from eavesdroppers.

 As an option, confidential Acquirer-to-cardholder messages are provided. This feature is
intended to allow Issuers to communicate back to cardholders about the reason that a
transaction is being declined or to request that the cardholder call the Issuer.

 Caveat SET does not provide non-repudiation. It is the intent to permit non-repudiation via rules and

policies of individual payment card brand implementations. Non-repudiation is a legal
concept indicating whether a party has a right to challenge another party’s claim of not
having participated in a transaction. The provisions and technical requirements to achieve
non-repudiation may vary depending on the jurisdiction.

 SET has not been analyzed to determine if its digitally-signed messages meet the legal
definition of non-repudiation. The rules and regulations of each payment card brand will
determine when a party has a right to deny participation in a SET transaction.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 46 as of December 10, 1998

Draft Version 1.0.1

 Certificates

 SET certificates SET uses X.509 version 3 certificates to support public keys for signature and encryption.

These certificates include a public key together with the means of authentication of that key.

 Purpose of
certificates

 The fundamental purpose of a certificate is to bind a public key to a uniquely identified entity.
It does so as follows:

� An entity creates a unique key pair including a private key and a public key that are
mathematically linked, and sends it to a CA along with a certificate request.

� After authentication, the CA creates a certificate containing the entity’s identification and its
public key and digitally signs it.

� It is the responsibility of the cardholder, merchant, financial institution, or CA to maintain
exclusive control of the private key.

A digital signature cryptographically binds the signed data with the private key. Since the
private key is mathematically linked to the public key of the key pair, the digital signature has
the effect of binding the public key to the data as well.

 However, anyone can generate a public/private key pair, so it is essential that some mechanism
be established that binds the public key to the entity in a trustworthy manner.

 Since a fraudulent CA could be set up to create certificates that would contain information
nearly identical to that contained in a valid certificate, the signature of the CA itself shall be
certified as authentic by a higher level CA. The only exception to this requirement is the
industry Root CA; it is the only implicitly trusted CA.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 47

Draft Version 1.0.1

 Certificates, continued

 Cardholder
certificates -
function and
content

 A cardholder’s signature certificate implicitly binds the public key to the cardholder’s primary
account number (PAN), but the PAN is effectively obfuscated by using a blinding technique so
that only the CCA, the cardholder, and the Issuer know the account number it cannot be
determined from the certificate alone. The cardholder passes the account number and a secret
value to the Acquirer, so that the Acquirer can then verify the card number against the blinded
account information contained in the cardholder’s certificate. In order to protect the
cardholder’s confidentiality, the cardholder’s name is not included in the certificate. In effect,
the blinded account information is a pseudonym of the cardholder.

 One function of the Acquirer is to ensure that the private key used to sign a payment is, in fact,
associated with the right payment card account. To avoid revealing the cardholder’s PAN to
third parties, the number is hidden using a keyed-hashing mechanism as a blinding function.
The result of this function is what is stored in a cardholder certificate.

 Cardholder
certificates -
optional

 SET allows cardholders without signature certificates to conduct SET transactions. This is an
interim option intended for use only in situations where the Issuer does not provide certificate
services. Acquirers Payment brands may choose whether or not to support this option.

 A flag in the Payment Gateway certificate indicates support for transactions in which the
cardholder has no certificate. Cardholder software and Payment Gateway software shall use
that flag to ensure that certificates are included in transactions when necessary.

 Brands that initially support cardholders without certificates may remove such support by
reissuing Payment Gateway certificates.

 If a user has obtained a cardholder certificate for a payment card account, the Cardholder
software should shall perform only signed transactions for that account.

 Support for cardholders with certificates is mandatory: Cardholder, Merchant, and Payment
Gateway software shall fully support cardholder certificates and transactions based on them.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 48 as of December 10, 1998

Draft Version 1.0.1

 Certificates, continued

 Merchant
certificates

 At least two key pairs are required for a Merchant to participate in SET transactions:

� A signature pair that is used to sign and verify messages provided to the Cardholder and
Payment Gateway; and

� A key-encryption pair that is used to protect messages generated by the Payment Gateway.

 A merchant may have additional sets of encryption and signature key pairs because of physical
implementation, security concerns, Acquirer policy, or a variety of other reasons. For
example, a merchant that operates multiple servers may elect to have a separate set of
encryption and signature key pairs for each server. In addition, new key pairs shall be
generated periodically.

The number of certificates needed by a merchant is a function of the number of that merchant’s
encryption and signature key pairs, the number of Payment Gateways that interface with the
merchant, and the number of brands accepted by the merchant.

 In the simplest case, the merchant will interface with a single Payment Gateway to process all
brands. However, a merchant may have relationships with multiple Acquirers. For example, a
single Acquirer may not process all the brands the merchant accepts, or the merchant may do
business in multiple national markets (and currencies) and have corresponding Acquirer
relationships. In addition, Acquirers may choose to operate multiple Payment Gateways for
load balancing and redundancy.

 Merchant
access to
account
information

SET allows the Acquirer to return cardholder payment information to the merchant, encrypted
under the merchant’s key. This capability is designated by an indicator in the merchant’s
certificate. This option is intended to allow merchants to use out-of-band clearing mechanisms
and to support legacy systems that depend on the availability of the account information.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 49

Draft Version 1.0.1

 Certificates, continued

 Payment
Gateway
certificates

 Two key pairs are required at the Payment Gateway:

� A signature pair that is used to sign and verify messages provided to the Cardholder and
Merchant; and

� A key-encryption pair that is used to protect payment instructions generated by the
cardholder and messages generated by the merchant.

 The number of certificates required by the Payment Gateway reflects the number of brands it
handles.

 Certificate
chain validation

 Certificates shall be validated through a hierarchy of trust. Each certificate is linked to the
signature certificate of the certificate issuing entity. Certificates are validated by following
the trust hierarchy to the Root CA. The path through which the certificates are validated is
called the certificate chain.

 The validation of each certificate shall be enforced at all levels of the chain. For example, a
cardholder shall validate the merchant, Merchant CA, Geopolitical CA (if any), Brand CA,
and Root CA certificates. The validation process may stop at a level that has been previously
validated. A detailed description is provided in “Certificate Chain Validation” on page 123.

 Summary of
certificate
types

 Table 12 lists the certificates defined by SET:

 Certificate Types Message
Signing

 Key Encryption Certificate and/or
CRL Signing

 Root CA X

 Brand CA X

 Geopolitical CA X X

 Payment Gateway CA X X X

 Merchant CA X X X

 Cardholder CA X X X

 Payment Gateway X X

 Merchant X X

 Cardholder X

 Table 12: Summary of Certificate Types

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 50 as of December 10, 1998

Draft Version 1.0.1

 CRLs and Brand CRL Identifiers

 Certificate
Revocation List
(CRL)

A certificate may need to be revoked or canceled for a number of reasons: for example, due to
a real or suspected compromise of the private key, a change in the identification information
contained in the certificate, or termination of use.

Each CA, with the exception of the MCA and CCA, shall generate, maintain, and distribute a
Certificate Revocation List (CRL) that lists certificates that it issued that have been revoked.

 Table 13 lists the SET entities that may generate a CRL and the reasons for which they would
do so.

Root CA unscheduled replacement of a Root certificate or BCA certificate

Brand CAs unscheduled replacement or termination of a CA certificate issued
by the BCA

Geopolitical CAs unscheduled replacement or termination of a CCA, MCA, or
PCA certificate issued by the BCA or GCA

Payment Gateway CAs unscheduled replacement or termination of a Payment Gateway
certificate issued by the PCA

 This entity: ...shall generate a CRL in the event of
unscheduled replacement or termination

of a certificate that it issued to:

 Root CA Root CA

 Brand CA

 Any Brand CA Geopolitical CA

 CCA, MCA, or PCA

 Geopolitical CA CCA, MCA, or PCA

 Payment Gateway CA Payment Gateway

 Table 13: Entities That Generate CRLs

Note: Cardholder and Merchant certificates are canceled rather than revoked; that is, they do
not appear on any CRL, as there are other means of determining that they are no longer valid.

 Brand CRL
Identifier (BCI)

 Each brand is responsible for managing Certificate Revocation Lists (CRLs) within its own
domain. The SET architecture introduces the concept of a Brand CRL Identifier (BCI). A BCI
is digitally signed by the brand and used to identify the SET CRLs that the Cardholder,
Merchant, Payment Gateway, and CA systems need to reference when validating certificates as
part of signature verification.

 Further detail Additional information about CRLs and BCIs is available in Part II starting at page Error!

Bookmark not defined..

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 51

Draft Version 1.0.1

 Chapter 3
Technical Requirements

 Overview

 Introduction Chapter 3 summarizes other design considerations that affect the overall technical

requirements for SET.

 Organization Chapter 3 includes the following sections:

 Section Title Contents Page

 1 Security Summarizes the primary security
considerations for SET.

 53

 2 Adaptability Summarizes the implications on the
design of supporting different
environments with respect to
cardholder certificates.

 59

 3 Interoperability Summarizes the general message
formats and encapsulation methods.

 60

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 52 as of December 10, 1998

Draft Version 1.0.1

 Section 1
Security

 Overview

 Introduction The intent of SET is to address certain security issues related to three-party payment

mechanisms conducted over the Internet.

Organization This section includes the following topics:

� Integrity
� Authentication
� Confidentiality

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 53

Draft Version 1.0.1

 Integrity

 Definition Data integrity is the assurance that the data received is the data that was sent.

 The sender generates an integrity value based on the data to be transmitted, then transmits both
the data and the integrity value to the receiver. The receiver validates the integrity value, thus
verifying that the data has not been altered during transmission.

 Hash functions Data integrity is supported by the use of hash functions. A hash function is applied to the

appropriate data to produce a statistically unique integrity value called the hash value. Hash
functions by themselves do not guarantee absolute data integrity. To provide this guarantee,
part of what is hashed must be a secret key.

 Hash functions are different from symmetric-key algorithms and have the following properties:

� A hash function is a public algorithm.

� A hash function is one-way; that is, given the hash value, it is not possible to recreate the
original data. (If the hash function is not cryptographically secure, it may be possible to
predict the input from the output – but many possible inputs could have the same output. For
a cryptographically secure hash algorithm, such as those used in SET, it is not
computationally feasible to recreate the original data.)

� The hash value is computed in such a manner that it is not feasible to identify other data that
will hash to the same value.

 Digital
signature

A digital signature is defined as data appended to, or a cryptographic transformation of, a
data unit that allows a recipient of the data to prove the source and integrity of the data, and
thereby protects against forgery.

 In SET, a digital signature is a hash value encrypted using the private key of the sender. The
hash value provides integrity of the data within the message; if the payment data is modified,
the hash value will be different, and that difference can be detected when the receiver
re-computes the hash. The hash is encrypted to ensure that a third party cannot change the
hash, since encryption of the new hash value would not be possible without the private
encryption key.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 54 as of December 10, 1998

Draft Version 1.0.1

 Authentication

 Definition Authentication provides assurance that the data received was sent by the party who claims to

have sent it.

 The sender uses digital signatures and public-key certificates to prepare the data to be sent.
The receiver verifies the digital signatures and public-key certificates, thus authenticating the
sender.

Authenticating
public keys

SET requires public/private key pairs for Payment Gateways, Merchants, and CAs, and
supports them as a recommended option for Cardholders. The public keys are distributed via
certificates signed by authorized CAs.

Cardholders, Merchants, and Payment Gateways shall authenticate the public keys of the
CAs and the Root Keys using mechanisms provided in SET. See “Root key distribution and
authentication” on page Error! Bookmark not defined. in Part II.

 Entity
authentication

 Digital signatures require a trusted third party to vouch for the authenticity of the public key
used to verify the signature. The process dictates that the trusted third party, a CA, provides
an electronic certificate that vouches for the fact that a public key is “owned” by a certain
entity. This electronic certificate (itself digitally signed by the CA) is stored by the entity in
its computer, and accompanies signed messages sent to other entities. The receiver’s system
uses the certificate and certificate chain to verify the sender’s public key. At that point the
receiver is sure that:

� the original data was not altered (data integrity);

� the message could only have been signed by the holder of that private key (entity
authentication); and

� a trusted third party has vouched for the fact that the signer is in fact the holder of that key
pair.

 The uniqueness of the digital signature and the underlying hash value coupled with the
strength of the public key certificate provide an acceptable level of assurance to authenticate
the sender and to verify that the sender originated the signed data.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 55

Draft Version 1.0.1

 Authentication, continued

 Cardholder
authentication

 The Cardholder certificate issued by the CCA is evidence that the Cardholder’s public key
has been tied to the account number. This mechanism will reduce the incidence of fraud and
therefore the overall cost of payment processing.

 Merchants and Acquirers shall verify that a cardholder is using a valid account number by
verifying the signatures on the Cardholder certificate and by validating the certificate’s chain.

 Merchant
authentication

 The Acquirer shall authenticate the merchant’s certificate request and, if appropriate, issue a
certificate through its MCA. The Merchant certificate provides verification of an agreement
between the merchant and the Acquirer. In essence, the certificate is an “electronic decal,”
similar to the brand decal in the merchant’s window.

 Cardholders and Payment Gateways shall authenticate Merchants by verifying the signatures
on the Merchant certificate and by validating the certificate’s chain.

 Payment
Gateway
authentication

 Payment card brands shall authenticate the Acquirer’s certificate request and, if appropriate,
issue a Payment Gateway certificate through the brand’s PCA.

 Since the Cardholder uses the Payment Gateway’s public key for encrypting the symmetric
key used to encrypt the payment instruction, the Cardholder (as well as the Merchant) must
authenticate the Payment Gateway. The Merchant provides the Cardholder with the Payment
Gateway’s encryption certificate. Cardholders and Merchants shall authenticate Payment
Gateways by verifying the signatures on the Payment Gateway certificate and by validating
the certificate’s chain.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 56 as of December 10, 1998

Draft Version 1.0.1

 Confidentiality

 Definition Data confidentiality is the protection of sensitive and personal information from unintentional

and intentional attacks and disclosure.

 Securing such data in uncontrolled environments, such as unsecured networks, requires data
encryption and associated key management.

 Confidentiality
in SET

 SET uses both asymmetric and symmetric-key algorithms in conjunction with a digital
envelope to provide data confidentiality. Refer to SET Book 1: Business Description for an
overview of this technique.

 Protecting
private keys

Public-key signature mechanisms are critically dependent on the security of the
corresponding private keys. Developers shall pay particular attention to the methods used to
store the private keys:

� Private keys shall be protected through encryption or tamper resistant mechanisms.

� Payment Gateways and Certificate Authorities shall use tamper resistant hardware
cryptographic modules to perform cryptographic functions and to generate and store secret
keys.

� Merchant and Cardholder applications should also employ hardware cryptographic
modules to perform cryptographic functions and to generate and store secret keys.

 Trusted cache Certificates, CRLs, and BCIs will be accessed frequently when processing SET messages.

Thus, the processing of successive SET messages may be optimized by maintaining a local
trusted cache of frequently accessed certificates, CRLs, and BCIs and their Thumbprints.
(See “Thumbprints” on page 68.)

� Each SET application shall fully validate certificates, CRLs, and BCIs before adding them
to the application’s trusted cache.

� Each Cardholder and Merchant system supporting SET shall enforce a policy to protect its
trusted cache from unauthorized access or modification.

Each certificate, CRL, and BCI shall either be authenticated and added to the trusted cache or
discarded at the conclusion of processing the message that contained it.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 57

Draft Version 1.0.1

Confidentiality, continued

 Protecting
account
information

SET offers an option that permits the Payment Gateway to provide cardholder account
information to the merchant, encrypted under the Merchant’s public key. When this option is
used, care shall be taken to ensure the security of the payment information as it resides on the
merchant’s systems:

� Merchant applications shall store payment information in encrypted form.

� Merchants should store payment information off-line, or behind a firewall or similar
mechanism.

 Payment data SET is responsible for the confidentiality of payment data that it needs to manage. Where

non-payment data confidentiality is needed, it is provided in the protocol messages by
including a reference to the data rather than the data itself. For example, SET does not
exchange the Order Description (OD), but includes a hash of the OD in the Purchase Request
(PReq). The following assumptions apply:

� The bit stream for the OD and purchase amount at the Merchant is identical to the
bit stream for the OD and purchase amount at the Cardholder.

� The Cardholder and Merchant software shall agree on the representation of this data before
SET is invoked.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 58 as of December 10, 1998

Draft Version 1.0.1

 Section 2
Adaptability

 Variations

 Purpose This section illustrates how SET has been designed to be adaptable to different business

models and operational environments, such as support for cardholders without certificates.
Several appendices provide more information about this topic:

� Appendix D: SET Fields
� Appendix E: Field Support Requirements
� Appendix S: Implementation Variations

 Use of
cardholder
certificates

 The cardholder’s signature certificate provides authentication and integrity of data sent to the
Merchant and to the Payment Gateway. SET supports environments in which cardholder
signature certificates are required, and also environments in which they are optional. A
payment card brand determines whether or not its application of SET requires cardholder
signature certificates.

 Certificate-
required
environments

 In environments in which certificates are required, all messages from the cardholder that
require authentication and integrity shall be signed with a signature authenticated by the
cardholder certificate. There are protocol initiation requests that do not include such
signatures, since no significant protocol failures would result from their abuse. All other
messages are signed, and the recipients of these messages are assured receipt of the
corresponding certificates by the protocol.

 Certificate-
optional
environments

 When a cardholder does not have a signature certificate, no digital signature is generated.
Instead, the Cardholder software generates a hash of the data and inserts the hash into the
digital envelope to ensure the integrity of its contents that the data in the message
corresponds to the digital envelope. However, unlike a signed message, the hash does not
protect against substitution of both the digital envelope and the message.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 59

Draft Version 1.0.1

 Section 3
Interoperability

Introduction

Organization This section includes the following topics:

� General Message Formats
� MessageWrapper
� Backward Compatibility
� System Clock Differences
� Extension Mechanism for SET Messages
� PKCS #7 Formats
� Transaction Validation by Non-SET Systems
� Optional Fields
� Language
� Date Fields
� Amount Fields

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 60 as of December 10, 1998

Draft Version 1.0.1

Initiation

 SET
environments

 It is anticipated that SET applications will operate in one of two environments:

� interactive – in this environment, the entities communicate in “real-time” with small time
delays between the exchange of messages (such as the World Wide Web); or

� non-interactive – in this environment, the entities communicate with large time delays
between the exchange of messages (such as electronic mail).

 SET initiation
process

 In an interactive environment, it is expected that a “SET initiation process” takes place that
triggers the SET protocol. This process allows the Cardholder and Merchant to exchange
certain information required for SET. Such information includes (but is not limited to):

� the brand the cardholder has selected,
� the order description, and
� the purchase amount.

 It is expected that standards will be developed to address how this information is exchanged
and how the SET protocol is initiated. Until such standards are available, SETCo provides an
interim standard in the SET External Interface Guide. (See “Related documentation” in the
Preface.)

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 61

Draft Version 1.0.1

 Message Formats

 Overview SET messages shall be formatted using non-proprietary techniques, permitting communication
over a variety of interactive and non-interactive mechanisms (as discussed in “Transport
mechanisms” on page 43). Wherever possible, external standards are employed to enable the
protocol to be easily implemented and to ensure that interoperability among implementations is
possible. Appendix A lists the specific version of each external standard on which SET is
based.

 Cryptographic
treatments

Cryptographic treatments are constrained to ensure that only as much cryptography is
employed as is required by the security needs of the payment card transaction.

 To promote interoperability and the ability to upgrade, SET uses the Public Key Cryptography
Standards (PKCS) to represent the cryptographic parameters and message encapsulation

 Notation and
encoding

 SET messages are defined using the ISO/IEC and ITU-T Abstract Syntax Notation (ASN.1)
standard and shall be encoded using the Distinguished Encoding Rules (DER). This permits
unambiguous encoding through a standard that is well understood and widely accepted.

Encoding
alternate
character sets

Unicode and the Basic Multilingual Plane are synonymous. SET supports BMPString for all
character strings where data can be displayed to a user; SET uses VisibleString in cases
where the character representation is limited to 7-bit ASCII.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 62 as of December 10, 1998

Draft Version 1.0.1

Message Formats, continued

 ASN.1/DER
encoded
messages

 The ASN.1 notation provides a clear, unambiguous definition of the content of messages;
DER provides an encoding that is precise and that ensures a single format for encoded data.
Such precision and uniqueness is critical to being able to support operations involving hashes
and signatures.

 SET ASN.1 definitions include a collection of intrinsic types that are used to define data
fields and messages but depend on additional restrictions and constraints. These shall be
checked by the application software. For example:

� ASN.1 type IA5String is used to define several data fields that contain character string data
(such as MerOrderNum). The permitted alphabet for values of the IA5String type is
sometimes referred to as the ASCII character set.

� Size constraints on the fields are imposed (for example, MerOrderNum may not exceed
25 bytes) and shall be checked by all SET software.

 Commercial ASN.1 code generators are available that enable software developers to generate
and receive SET messages with only modest programming effort beyond providing the
ASN.1 specification itself to such tools.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 63

Draft Version 1.0.1

 MessageWrapper

 Purpose The MessageWrapper is the top level ASN.1/DER data structure type in the SET protocol.

Every SET message contains a cleartext MessageWrapper , which contains the following
components:

� a clear text MessageHeader ,
� a Message , and
� optionally, message extensions.

The MessageWrapper presents information to the receiver of a message at the very start of
message processing that can be used directly by the receiver without first performing
cryptographic processing. The MessageWrapper identifies the type of SET Message and
provides unique identifiers that are sufficient for the receiver to detect duplicate and
unexpected messages.

 Processing All SET-related processing begins with the MessageWrapper .

 The MessageHeader shall be decoded before Message processing. The TransIDs and
RRPID fields have been placed in the MessageWrapper MessageHeader to permit
early duplicate detection; these fields are repeated within the Message , so that the integrity
of this data can be protected within the body of the message by cryptographic enhancements.

At the time the MessageWrapper MessageHeader is decoded, decoding of the
Message component may not be processed deferred; but however, its type can be
determined from the DER type ASN.1 tag field of Message . After initial
MessageWrapper MessageHeader processing is performed:

� the Message is decoded (if that has been deferred),

� the Message is decrypted and/or its signature is verified, as appropriate, then

� the content of the Message is decoded to yield the data that is processed individually for
each message type.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 64 as of December 10, 1998

Draft Version 1.0.1

 Backward Compatibility

 Application
requirements

In order for SET to be successful, new versions of SET must be able to interoperate with
prior versions. In general, applications shall interoperate with the current version revision of
SET and the immediate prior version (and the revisions of each). That is, an application that
supports Version 2 of SET (when it is published) shall be able to send and receive Version 1
messages. A future version of SET may require compatibility with more than one prior
version. Compatibility requirements will be explicitly stated in each version/revision that is
published.

 SET messages shall use the highest version/revision that both sender and receiver support.

 Checking the
version

 To determine the version of the message, the software shall check
MessageHeader.version and MessageHeader.revision .

 Responding to
older version
messages

 An application that can process a message from a previous version shall respond (if
appropriate) using messages and formats from the received version.

 An application that receives a message with a version number that is lower than it can
process (such as a Version 1 3 application receiving a Version 0 1 message) shall reject the
message by responding with an Error message containing an ErrorCode of versionTooOld.

 Software
upgrade
prompts

 An application that receives an ErrorCode of versionTooOld should display a message with
information about how to upgrade to the latest version of the software. Cardholder software
vendors in particular should include such a feature.

 Responding to
newer version
messages

 An application that receives a message with a version number that is higher than it can
process (such as a Version 1 application receiving a Version 2 3 message) shall reject the
message by responding with an Error message with an ErrorCode of versionTooNew.

 If possible, an application that receives an Error message with an ErrorCode of
versionTooNew should try re-sending the message with a lower version of SET.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 65

Draft Version 1.0.1

 System Clock Differences

 Clocks must
match

Note to reviewers: This section will be reviewed to determine what changes are needed for
the following situations:
 1) message wrapper processing,
 2) certificate chain validation, and
 3) receipt and processing of initial certificates (may be different than 2 above)

In order to process messages correctly, the system clocks of the sender and receiver must
match reasonably well. Factors that can result in either system reporting an inaccurate time
include:

� The user failed to set the clock to the correct local date and time.
� The user indicated an incorrect local time zone.
� The battery protecting the clock in the event of power failures has failed.
� The clock has drifted significantly since it was set.

 Checking the
date and time

 Each implementation of SET will determine the time variation that it will accept. For
example, a system may accept messages that report to have been generated up to 48 hours in
the past or 12 hours in the future. If a message is received that is outside of this range, the
application shall reject the message by responding with an Error message containing an
ErrorCode of messageTooOld or messageTooNew.

 Clock change
prompts

An application that receives an ErrorCode of messageTooOld or messageTooNew should
display a message with the current system date and time as well as the date and time reported
by the other system. If possible, the application should provide a user interface feature (such
as a button) that when activated changes the system clock to match the time provided by the
remote system. Cardholder software vendors in particular should include such a feature.

 Note to reviewers: this will be updated to address situations where the CA accepts a message
in the “ near future” resulting in a not-yet-valid certificate being returned to the end entity.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 66 as of December 10, 1998

Draft Version 1.0.1

 Extension Mechanism for SET Messages

 Why
extensions may
be necessary

 This version of SET was intentionally limited to the minimum functionality necessary to
support cardholders and merchants doing business on the Internet. Consequently, some
business functions are not included in the definition of SET payment messages. Furthermore,
it is unlikely that SET could ever be robust enough to cover the business practices of every
national market and every Acquirer. Therefore, it is necessary to provide a mechanism to
extend SET payment messages.

 An example of a business function that is not supported by the SET messages is Japanese
Payment Options. Issuers in Japan have options for payment that are selected by the
consumer at the time of the purchase. Since there is no place in the SET message to carry this
information, an extension to the protocol is necessary.

 The extension
mechanism

SET messages are extended in the same way that X.509 certificates are extended.
Specifically:

� An extensions field is provided that contains a sequence of extension data.
� The extension data indicates the type of extension and the criticality of the extension.

 See Appendix H: “Extension Mechanism for SET Messages” for details.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 67

Draft Version 1.0.1

Thumbprints

Purpose Thumbprints are hashes of certificates, CRLs, or BCIs. They have several uses in SET:

� to minimize certificates, CRLs, and BCIs exchanged,
� to help ensure that an unsigned message was not altered,
� to indicate specific certificates included in a message, and
� to indicate a certificate, CRL, or BCI that caused processing to fail.

Thumbprint
generation

A Thumbprint is computed by performing the SHA-1 hash of one of the following
DER-encoded ASN.1 structures:

� UnsignedCertificate
� UnsignedCertificateRevocationList
� UnsignedBrandCRLIdentifier

 The hash is computed over the tag-length-value of the encoded structure. The Thumbprint is
the same hash that is used to sign or verify a certificate, CRL, or BCI.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 68 as of December 10, 1998

Draft Version 1.0.1

Thumbprints, continued

 Minimizing
certificates,
CRLs, and BCIs
exchanged

In order to support the security requirements of SET, public-key certificates, CRLs, and BCIs
shall be carried in the protocol. Since these data structures are large, the Thumbprint
mechanism is provided to reduce required traffic.

An end entity may include Thumbprints in a message as a compact way to identify the
certificates, CRLs, and BCI that it is holding. The recipient of a message that contains
Thumbprints may check the Thumbprints and include in the response only certificates, CRLs,
or the BCI that the end entity does not have but will need for the transaction. (This process is
described in more detail below.)

 Since Thumbprints are very small compared to the certificates, CRLs, and BCIs that they
represent, much overhead is avoided.

 Sending entity Thumbprints are sent by an entity in a SET request message and can always be ignored by

the corresponding recipient.

 If An end entity would normally need a certificate or CRL from another SET entity, it may
send the remote entity include in many SET request messages the Thumbprints of the
certificates, CRLs, and BCIs that it possesses and that it expects to be related to the
transaction.

SET software shall not send Thumbprints for all certificates, CRLs, and BCIs currently
existing in its cache, but only for those that are pertinent to a particular request/response
message pair. For example, merchant Cardholder software shall not send the Thumbprints for
other cardholders merchants or for other brands.

 Thumbprints may be listed in any order.

 Receiving
entity

The recipient of a SET request message shall ensure that the requester possesses every
certificate, CRL, and BCI needed to complete the processing of the response message and to
create subsequent request messages.

The system responding to a message that contains Thumbprints may either:

� The responding entity should omit from its response message any certificates and CRLs for
which it has received Thumbprints. check the Thumbprints and include in the response
only certificates, CRLs, or the BCI that the requester does not have but will need for the
transaction; or

� ignore the Thumbprints and send every certificate, CRL, and BCI that the requester will
need.

 (If the requester does not include Thumbprints, the responder must always include all needed
certificates, CRLs, and BCI.)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 69

Draft Version 1.0.1

Thumbprints, continued

Integrity of
unsigned
message

For most SET messages, signature verification and cryptographic hashing provide assurance
that the request was not altered. For certain unsigned messages, these methods are not
available. Instead, the requester sends Thumbprints in the request message, then compares
them to Thumbprints received in the response to obtain some assurance of integrity.

Indicating
certificates in
request or
response

Some SET messages include one or more specific Thumbprints that identify specific
certificates included in the message:

When: the Thumbprint(s) of is/are included in:

a key-encryption certificate is
included in a response

the key-encryption certificate the response

a key-encryption certificate is being
renewed

the certificate being renewedthe request

certificates are issued (new or
renewal)

the new or renewed
certificates

the response

Indicating
invalid
certificate,
CRL, or BCI

When message processing fails because of a certificate, CRL, or BCI, its thumbprint is
included in the Error message. If more than one of these data structures is invalid, the Error
message will indicate the first one processed (because processing stops once an Error
message is generated).

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 70 as of December 10, 1998

Draft Version 1.0.1

 PKCS #7 Types

 Purpose To ensure interoperability and the ability to upgrade, the Public-Key Cryptography Standards

(PKCS) #7, Cryptographic Message Syntax Standard Version 1.6, is used as the basis for
SET cryptographic encapsulation methods. Review the PKCS #7 documentation cited in
“Related documentation” in the Preface.

 Benefits PKCS #7 formats are used to represent the enveloped data in SET messages. ASN.1 and its
encoding rules, a set of international standards, are used throughout the PKCS #7 specification. By using ASN.1 to
define the SET messages, one format is used throughout the entire SET specification.

 PKCS #7 types SET uses the following PKCS #7 ASN.1 types:

� SignedData, for digitally signed data,
� EnvelopedData, for data encrypted with public keys,
� EncryptedData, for data encrypted with symmetric keys,
� DigestedData, for hashed (or linked) data.

 Implicit
certificates and
CRLs

 Each signed message contains all certificates and CRLs necessary for the receiver to verify
the message signature. Certificates and CRLs are included in the Certificates and CRLs fields
of the SignedData type. When a key-exchange certificate is included, its Thumbprint is also
included within the message. (Because BCIs are a SET innovation, no place is allowed for
them in PKCS #7. Instead, they are carried in SET fields.)

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 71

Draft Version 1.0.1

 PKCS #7 Types, continued

 SignedData The SignedData type from PKCS #7 is shown below to aid in understanding the signature

process.

 Multiple occurrences of SignerInfos are permitted within SignedData; however, in SET a
SignedData message is signed by no more than two parties keys (both belonging to the same
entity).

SignedData

Version Digest
AlgorithmIdentifiers

ContentInfo

ContentInfo

Certificates CRLs SignerInfos

... ...

ContentType Content

2 sha1

Certificates needed to
verify the signature

DataToBeSigned
(DER Encoded)

SignerInfo

Version IssuerAnd
SerialNumber

Digest
Algorithm

issuer
Name

Certificate
SerialNumber

2 sha1 contentType
messageDigest

(SHA-1 digest of
content appears

here)

Authenticated
Attributes

rsaEncryption not used

(From signer’s Certificate)

DigestEncryption
Algorithm

Encrypted
Digest

Unauthenticated
Attributes

See
Appendix M

Signature
generated over
Authenticated

Attributes

 Figure 5: SignedData

Content SET includes two operators for type SignedData:

Page

Signature S () content always present 151

SignatureOnly SO () content always absent 159

 Further detail Appendix M: “ContentTypes” provides a table of SET messages (or components of

messages) with their content and contentType values used in SignedData.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 72 as of December 10, 1998

Draft Version 1.0.1

 PKCS #7 Types, continued

 Sample code:
SignedData

The following sample ASN.1 code shows how to compose SignedData using data structure
dataTBS as the data to be signed using the Signature operator. The ASN.1 type of dataTBS is
identified by id-set-content-dataTBS.

 signedData SignedData ::= {
 sdVersion 2,
 digestAlgorithms {
 { algorithm id-sha1 ,
 parameters NULL
 }
 },
 contentInfo {
 contentType " id-set-content-dataTBS ",
 content " dataTBS "
 },
 certificates { ... },
 crls { ... },
 signerInfos {
 { siVersion 2,
 issuerAndSerialNumber {
 issuer "Certificate.issuer" ,
 serialNumber "Certificate.serialNumber"
 },
 digestAlgorithm {
 algorithm id-sha1 ,
 parameters NULL
 },
 authenticatedAttributes {
 { type contentType ,
 value " id-set-content-dataTBS "
 },
 { type messageDigest ,
 value " Digest of dataTBS "
 }
 },
 digestEncryptionAlgorithm {
 algorithm id-rsaEncryption ,
 parameters NULL
 } encryptedDigest "Signed authenticatedAttributes"
 }
 }
 }

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 73

Draft Version 1.0.1

 PKCS #7 Types, continued

 Authenticated
attributes

 SET PKCS #7 SignedData always includes two authenticated attributes: contentType and
messageDigest. The attributes may occur in either order; the verifying party must preserve
the order while validating the message.

contentType The type of content being signed, and therefore protected by the
signature.

messageDigest A digest of the content.

Object identifiers have been defined to uniquely identify each SET ASN.1 type that can
appear in SignedData. See Appendix M: “Content Types.”

 Example Consider the signature on an ASN.1 type named dataTBS. The SHA-1 hash of the
DER-encoding of this type is computed. An authenticated attributes data structure is created
by placing the object identifier id-set-content-dataTBS into a contentType attribute and the
digest of dataTBS into a messageDigest attribute as shown in the following table.

 contentType id-set-content-dataTBS

 messageDigest SHA-1(dataTBS)
 The SHA-1 hash of the DER-encoding of the AttributeSeq identified by

authenticatedAttributes (that is, excluding the outer tag [2] and its length) of this data
structure is computed and the result encrypted using the signer’s private key; it is this
encrypted digest that is placed in the EncryptedDigest field of the SignedData structure.

 The object identifier id-set-content-dataTBS identifies the content.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 74 as of December 10, 1998

Draft Version 1.0.1

 PKCS #7 Types, continued

 EnvelopedData The EnvelopedData type from PKCS #7 is shown below to aid in defining understanding the

process of encryption with public keys. Multiple occurrences of RecipientInfos are permitted
within PKCS #7 EnvelopedData; however, only one RecipientInfo is used in SET messages.

EnvelopedData

Version

1

Recipient
Infos

Encrypted
ContentInfo

RecipientInfo

Version

0

IssuerAnd
SerialNumber

KeyEncryption
Algorithm

Encrypted
Key

rsaOAEPEncryptionSET

issuer
Name

Certificate
SerialNumber

(Identifies the certificate of the intended
recipient, certificate is not included)

EncryptedContentInfo

ContentType
ContentEncryption

Algorithm
Encrypted
Content

desCBC

See Appendix M

 Figure 6: EnvelopedData

 Further detail Appendix M: “ContentTypes” provides a table of SET messages (or components of

messages) with their content and contentType values used in EnvelopedData.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 75

Draft Version 1.0.1

 PKCS #7 Types, continued

 Sample code:
EnvelopedData

The following sample ASN.1 code shows how to compose EnvelopedData using data
structure dataTBE as the data to be enveloped (whose ASN.1 type is identified by
id-set-content-dataTBE) and optional data structure extraData. The symmetric key in this
sample is a DES key, a known, shared secret between the sender and the receiver.

 envelopedData EnvelopedData ::= {
 edVersion 1,
 recipientInfos {
 { riVersion 0,
 issuerAndSerialNumber {
 issuer " Certificate.issuer" ,
 serialNumber " Certificate.serialNumber "
 },
 keyEncryptionAlgorithm {
 algorithm rsaOAEPEncryptionSET ,
 parameters NULL
 },
 encryptedKey " RSA encrypted DES key, extraData "
 }
 },
 encryptedContentInfo {
 contentType " id-set-content-dataTBE ",
 contentEncryptionAlgorithm {
 algorithm id-desCBC ,
 parameters cbc8Parameter
 },
 encryptedContent " dataTBE encrypted with DES symmetric key "
 }
 }

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 76 as of December 10, 1998

Draft Version 1.0.1

 PKCS #7 Types, continued

 EncryptedData The EncryptedData construct from PKCS #7 is shown below to aid in defining the process of

encryption with symmetric keys.

EncryptedData

Vers ion Encrypted
ContentInfo

EncryptedContentInfo

ContentT ype
ContentEncryption

Algor ithm
Encrypted
Content

desCBC
desCDMF

0

 Figure 7: EncryptedData

 Sample code:
EncryptedData

 The following ASN.1 sample code shows how to compose EncryptedData using data
structure dataTBE as the data to be encrypted, whose ASN.1 type is identified by
id-set-content-dataTBE. The symmetric key in this sample is a DES key, a known, shared
secret between the sender and the receiver.

 encryptedData EncryptedData ::= {
 version 0,
 encryptedContentInfo {
 contentType "id-set-content-dataTBE",
 contentEncryptionAlgorithm {
 algorithm id-desCBC , -– or id-desCDMF
 parameters cbc8Parameter
 },
 encryptedContent "dataTBE encrypted with DES symmetric key"
 }
 }

 Further detail Appendix M: “ContentTypes” provides a table of SET messages (or components of

messages) with their content and contentType values used in EnvelopedData.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 77

Draft Version 1.0.1

 PKCS #7 Types, continued

 DigestedData The DigestedData construct from PKCS #7 is shown below to aid in defining the hashing

process.

sha1

ContentInfo

rsaOAEPEncrypt ionSET

0

Digest
Algor i thm

Content
Info

Digest

DigestedData

Vers ion

See Appendix M

ContentContentType

(Optional - always
absent in SET)

 Figure 8: DigestedData

 Sample code:
DigestedData

 The following ASN.1 sample code shows how to compose DigestedData as a detached digest
(without content) using data structure dataTBH as the data to be digested (or hashed), whose
ASN.1 type is identified by id-set-content-dataTBH.

 digestedData DigestedData ::= {
 ddVersion 0,
 digestAlgorithm {
 algorithm id-sha1 ,
 parameters NULL
 },
 contentInfo {
 contentType "id-set-content-dataTBH "
 },
 digest "SHA-1 hash of the dataTBH"
 }

 Further detail Appendix M: “ContentTypes” provides a table of SET messages (or components of

messages) with their content and contentType values used in DigestedData.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 78 as of December 10, 1998

Draft Version 1.0.1

 Transaction Validation by Non-SET Systems

 Explanation Evidence that a cardholder has participated in a SET transaction is provided in two ways:

� SET participants (Merchant and Payment Gateway) receive the cardholder’s digital
signature and certificate, which serve as evidence.

� The Issuer does not receive the digital signature and certificate; they are dropped when the
Payment Gateway processes the transaction and formats it for use by legacy payment
systems. Instead, the Issuer can verify a hash of data known only to the Cardholder and
(via the CCA) to the Issuer.

 This hash, called the Transaction Stain (TransStain), is developed and used as follows:

� During certificate registration, the cardholder sends a secret value, CardSecret , to the
CCA. This secret value is combined with another secret value generated by the CA to
create the secret.

� The Cardholder and CCA remember CardSecret . Because the CCA is operated on behalf
of the Issuer, this value is also available to the Issuer.

� When creating each Payment Request (PReq), Cardholder software generates
TransStain as a hash of the globally unique transaction identifier, XID, and CardSecret ,
and includes it in the Payment Instructions. Because the hash includes XID, the value
changes for every transaction.

� The Payment Gateway sends both TransStain and XID to the Issuer.

 Cardholders
without
certificates

 If the Cardholder does not have a certificate, the value of CardSecret is zero.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 79

Draft Version 1.0.1

Optional Fields

Overview When a field is marked OPTIONAL in the ASN.1, that field may or may not appear in
individual messages. Whether the field appears in a given instance of the message is
described in SET Book 3: Formal Protocol Definition and in the processing steps in Parts II
and III of this book. Whether an application shall (or may) include support for the field is
defined in Appendix E: “Field Support Requirements.”

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 80 as of December 10, 1998

Draft Version 1.0.1

Language

Specifying
Language

The value of Language shall be one of the following, and SET software shall be able to
process all of the following:

� a two-character value specified in ISO 639;

� a two-character value specified in ISO 639, a hyphen, and a two-character value specified
in ISO 3166; or

� a value registered with IANA in accordance with RFC 1766.

When an application supports multiple variants of a language, one variant shall be designated
the primary variant. If an unsupported variant of a language is requested, the primary variant
shall be used.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 81

Draft Version 1.0.1

Date Fields

Date field
format

Dates in SET are typically indicated in the form of a string representing the calendar date and
UTC Greenwich Mean Time, in the format:

YYYYMMDDHHMM [SS[.f[f[f]]]]Z GeneralizedTime

YYMMDDHHMM [SS[.f[f[f]]]]Z UTCTime

where Z is a literal upper-case letter Z.

That is, the string should consist of:

� a two- or four-digit representation of the year that includes the century (GeneralizedTime
uses four digits; UTCTime uses two),

� a two-digit representation of the month,

� a two-digit representation of the day in the month,

� a two-digit representation of the hour (on a 24-hour clock),

� a two-digit representation of the minutes after the hour,

� an optional a two-digit representation of the seconds after the minute,

� an optional representation of fractional seconds, indicated by a decimal point followed by
one to three digits, and

� a literal upper-case letter Z.

No separators are used aside from the decimal point in the optional representations of
fractional seconds.

Examples:

19960223210600Z February 23, 1996, 9:06 p.m.
19960223210630Z February 23, 1996, 9:06:30 p.m.
19960223210630.123Z February 23, 1996, 9:06:30:123 p.m.

Midnight shall be represented in the form: YYYYMMDD000000Z, where YYYYMMDD
represents the day following that begins with the midnight in question.

Following are examples of invalid representations:

19920520240000Z invalid - midnight represented incorrectly
19920622123421.0Z invalid - spurious trailing zeros

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 82 as of December 10, 1998

Draft Version 1.0.1

Amount Fields

Amount format Amounts in the SET payment messages are expressed in terms of three fields: currency,
amount, and amtExp10.

Field Definition

currency The value shall be a numeric ASCII string specifying the three-digit
ISO 4217 currency code. For example, a payment denominated in U.S.
currency will have a currency value of 840. The values shall be between 1
and 999 inclusive.

amount The value shall be a numeric ASCII string representing the amount of the
payment, specified in terms of the minor unit of the stated currency. The
value shall be a non-negative integer.

amtExp10 The value shall be a numeric ASCII string number representing an exponent
base 10 such that

amount * (10 ** amtExp10)

shall be the value of the amount in the minor major unit of the currency
specified in ISO 4217. The value may be either a negative or positive integer,
but is usually between -3 and 0.

Example In order to represent US $2.50 in the PurchAmt field, the values for currency, amount, and
amtExp10 fields are 840, 250, and -2, respectively.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 83

Draft Version 1.0.1

 Chapter 4
System Concepts

 Overview

 Introduction Chapter 4 summarizes other important system concepts pertinent to understanding the

architecture of SET.

 Organization Chapter 4 includes the following sections:

 Section Title Contents Page

 1 Cryptography Highlights the specific cryptographic
algorithms and features.

 85

 2 Notation and Definitions Summarizes the notation and
conventions used throughout the
remainder of this Programmer’s
Guide.

 93

 3 Other Features Describes other features of the design
of SET.

 98

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 84 as of December 10, 1998

Draft Version 1.0.1

 Section 1
Cryptography

 Cryptographic Features

 Default
algorithms

The default algorithms defined for SET are:

 type algorithm usage

 asymmetric RSA with SHA-1 message signing

 certificate and CRL signing

 BCI signing

 asymmetric RSA (OAEP) data encryption

 symmetric DES-CBC data encryption

 hashing SHA-1 message digests and keyed hash

 keyed hash HMAC-SHA-1 Transaction Stain (see page 79)

 Unique Cardholder ID in Cardholder
certificate (see page Error! Bookmark
not defined. in Part II)

Table 14: Default Algorithms

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 85

Draft Version 1.0.1

Cryptographic Features, continued

 Asymmetric
key sizes

 Entity Message Signing Key
Encryption

 Certificate
Signing

 CRL
Signing

(also used
by the BCA
to sign BCI)

 Cardholder 1024

 Merchant 1024 1024

 Payment Gateway 1024 1024

 Cardholder CA 1024 1024 1024

 Merchant CA 1024 1024 1024

 Payment Gateway CA 1024 1024 1024 1024

 Geopolitical CA 1024 1024

 Brand CA 1024 1024

 Root CA 2048 2048

 Table 15: Asymmetric Key Sizes

 Note: These key sizes may change in future versions of SET; however, because of import and
export restrictions, SET applications must shall hard-code these sizes.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 86 as of December 10, 1998

Draft Version 1.0.1

 Cryptographic Features, continued

 DES The Data Encryption Standard (DES-CBC) is the default symmetric-key algorithm used in

SET to protect sensitive financial data, such as the payment instruction (PI). Originally
published in 1977 for use by the United States government to protect valuable and sensitive –
but unclassified – data, DES was subsequently adopted by the American National Standards
Institute (ANSI) as the Data Encryption Algorithm (DEA).

 DES specifies a cryptographic algorithm to encrypt and decrypt 64-bit blocks of data under
the control of a unique key. The algorithm is defined in Federal Information Processing
Standard (FIPS) 46-2, published by the U.S. National Institute of Standards and Technology
(NIST). SET uses the Cipher Block Chaining (CBC) mode of DES, as defined in FIPS 81.
The key is 8 bytes long, with each byte having a parity bit in position 0, yielding an effective
key length of 56 bits. The standard padding rule shall be used with the DES-CBC mode as
described below.

 SET DES-CBC
Padding Rule

 The SET padding rule for DES-CBC requires that a padding string always be appended to the
final plaintext block being encrypted. This final block may be a complete data block, or a
partial data block whose length is not an integral multiple of the block length. A padding
string is used in SET regardless of whether the final block is a partial or complete data block.

 The padding string appended to the final data block makes its length an integral multiple of
eight octets. If BL represents the length in octets of the final data block, then the padding
string consists of 8 - (|| BL || mod 8) octets. Each octet in the padding string has as its value
8 - (|| BL || mod 8).

 When the length of the padding string is a single octet, the value of that octet is 01. When the
length of the string is two octets, the value of the two octets is 02, and the padding string used
is ‘0202’. When the length is three, the value is 03, and the padding string is ‘030303’, and
so on.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 87

Draft Version 1.0.1

 Cryptographic Features, continued

 CDMF Commercial Data Masking Facility (DES-CDMF) is an alternate symmetric-key algorithm,

used in SET as one of the choices to protect Acquirer-to-Cardholder and CA-to-Cardholder
messages.

 CDMF is a scrambling technique that relies on DES as the underlying cryptographic
algorithm, but weakens the overall cryptographic operation by defining a key-transformation
method that produces the equivalent of a 40-bit DES key instead of the 56-bit key length
required for full strength DES. Since the CDMF algorithm is not as resistant to key
exhaustion as DES, CDMF provides a form of data masking rather than data encryption.

The CDMF key transmitted in the SET protocol is the key before being transformed for use
in a DES encryption/decryption engine. In other words, a CDMF key is passed just like a
normal DES key.

 For further information about CDMF, see “Related documentation” in the Preface.

 Hashing
algorithm

 Secure Hash Algorithm (SHA-1) is the default hashing algorithm used in SET, including the
hashes used in signatures. All references to hash algorithms shall be interpreted as using the
SHA-1 hash algorithm defined in FIPS 180-1.

Keyed hash
algorithm

HMAC-SHA-1 (or simply HMAC) is the default keyed hash algorithm used in SET. It is
specified in RFC 2104.

For further information about HMAC, see “Related documentation” in the Preface.

 Digital
envelope

 A digital envelope is a generic cryptographic technique to encrypt data and send the
encryption key along with the data. Generally, a symmetric-key algorithm is used to encrypt
the data and an asymmetric algorithm is used to encrypt the symmetric encryption key.

 OAEP SET uses the Bellare-Rogaway Optimal Asymmetric Encryption Padding (OAEP) method in

conjunction with its cryptographic encapsulation operators. In addition, SET uses the hashed
data technique developed by Matyas and Johnson as an enhancement to the basic Bellare-
Rogaway construction. Although OAEP is not directly related to the digital enveloping
process, SET toolkits and applications shall apply OAEP prior to encrypting the DES key and
optional data using the public key of the receiver.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 88 as of December 10, 1998

Draft Version 1.0.1

 Other Cryptographic Implications

 Randomness An area of special consideration for developers of SET toolkits and applications is the

implementation of random number generation used for keys and nonces. Although a precise
definition of randomness is outside the scope of the SET specification, developers of
products need to be cognizant of the importance of this aspect in their implementation. Poor
key generation and seeding methods due to using weak random numbers are common
downfalls of cryptographic implementations. The reader is encouraged to use the
recommendations provided in RFC 1750, Randomness Recommendations for Security,
D. Eastlake, S. Crocker, J. Schiller, December 1994.

 For cryptographic purposes, once a strong seed is collected, it shall either be used one time
only or it shall be used exclusively in a cryptographically secure random number generator.
Also, each instance of random number generation algorithm shall have its own independent
key-generation seed.

 Statistically
unique field
values

 SET defines several field values as “statistically unique.” This means that statistically, the
odds are extremely small that the same value will be randomly generated twice. The
following are among the statistically unique fields used by SET: XID, RRPID, EXNonce ,
NonceCCA , and ODSalt .

 Nonce, salt, or
freshness
challenge

 SET defines several fields as nonces, salts, or freshness challenges to defeat playback
attacks. The sending entity shall generate a random statistically unique value and insert this
value into the message. The recipient of the message shall copy this value into the
corresponding response message. The sending entity will compare the two values to ensure
they are the same.

 Algorithm
independence

 Although this version of the SET specification is explicit about the cryptographic algorithms
that shall be supported by Cardholder, Merchant, and Payment Gateway systems, the
protocol’s cryptographic encapsulation operators have been designed to be algorithm
independent. All ASN.1 algorithm information object sets are coded with the extension
marker (…) to allow additional algorithm objects to be added to future versions of the
specification, while remaining backward compatible with this version of SET.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 89

Draft Version 1.0.1

 Other Cryptographic Implications, continued

 Hardware
tokens

 Depending on the policies established by the Acquirer and the brand, hardware tokens may
also be used by systems supporting SET. A hardware token is defined as a hardware
cryptographic module that does not allow disclosure of the private key.

 Regarding performing cryptographic functions in hardware tokens:

� CAs shall use hardware tokens for all private-key operations.

� Payment Gateways shall support the use of hardware tokens for all private-key operations;
their use may be mandated by Acquirer or brand policy.

� Merchant software should support the use of hardware tokens; their use may be mandated
by Acquirer or payment card brand policy.

� Cardholder software may support the use of hardware tokens.

For more information on hardware tokens, see “Tamper resistant hardware” on page 38.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 90 as of December 10, 1998

Draft Version 1.0.1

Cryptographic Optimization

Reuse of
symmetric DES
keys

The computational overhead of generating and processing RSA envelopes can be lessened in
certain circumstances by reusing the DES key used to encrypt information. Specifically,
when the Merchant encrypts SET messages for transmission to the Payment Gateway or
when the Payment Gateway encrypts SET messages for transmission to the Merchant, they
may reuse symmetric DES keys with the following restrictions:

� A particular DES key may be reused only between a specific Merchant and Payment
Gateway. (For this purpose, the Merchant and Payment Gateway are each defined by a
single SET key-encryption certificate.) A key shall not be shared with multiple sources or
destinations.

� A particular DES key shall not be used for longer than 24 hours nor more than 1,000
messages. (Keys must be changed at least this frequently to avoid creating an attractive
target for cryptographic analysis.)

� A particular DES key shall not be used for both sending and receiving SET messages; that
is, each key may be used in only one direction. (This ensures that different random number
generators are used for each direction of communication, and reduces the usefulness of
analyzing the merchant-to-gateway communications.)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 91

Draft Version 1.0.1

Cryptographic Optimization, continued

Optimizing
Enc- and
EncB -protected
messages

The Enc and EncB operators are used to encrypt several SET messages transmitted between
the Merchant and Payment Gateway. There is an opportunity to optimize the computational
cost of the RSA envelope for these messages. This technique is recommended for Merchant
and Payment Gateway implementations.

Note: This optimization technique does not apply to the EncX and EncBX operators, which
carry additional data in the RSA envelope; nor to the Cardholder, who does not send multiple
messages to the same Payment Gateway.

To create a message, a Merchant or Payment Gateway:

� may optionally remember and reuse DES keys as discussed in “Reuse of symmetric DES
keys” above;

� may optionally remember the RSA envelopes created for Enc and EncB encryptions and
associated with remembered DES keys; and

� may optionally reuse previous DES keys and matching RSA envelopes to prepare a new
Enc -protected or EncB -protected message for encryption.,

To process a message, a Merchant or Payment Gateway:

� may optionally remember DES keys and matching RSA envelopes recovered from
incoming messages, and

� may compare an incoming RSA envelope against cached copies of envelopes from
previous messages from the same entity. If an incoming envelope is the same as the
envelope of a previous message, then the DES key of the previous message can be used to
decrypt the DES portion of the current message. This saves the computational cost of
decrypting the RSA envelope.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 92 as of December 10, 1998

Draft Version 1.0.1

 Section 2
Notation and Definitions

 Overview

 Purpose This section provides a high-level overview of the fundamental cryptographic treatments

that are used to describe the payment and certificate processing flows in this Programmer’s
Guide.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 93

Draft Version 1.0.1

 Notation

 Purpose The remainder of this book makes use of the abstract notation described in Table 16.

 Concept Notation Definition

 Tuple {A, B, C} A grouping of zero or more data elements. These
represent documents or messages, terms occasionally
used interchangeably with “tuple.” Tuples are denoted
by identifiers: alphanumeric symbols.

 This notation means “the tuple containing
A, B, and C,” which may, themselves, be tuples.

 Component T = {A, B, C} A tuple may be given a name as shown, in which case
T.A, T.B, and T.C refer to the respective components
of T.

 Ordered
concatenation

 A | B | C An explicit, ordered concatenation of items
A, B, and C.

 Optional [A] Item A is optional.

 Selection <A, B, C> Exactly one of A, B, and C must
appear.

 Any other nesting
of these brackets is

permissible.

 Optional
selection

 [<A, B, C>] The selection is optional; that is,
that either nothing or exactly one
of A, B, and C may appear.

 Multiple
instances

 {A +} A tuple containing
one or more instances of A.

 {A *} A tuple containing
zero or more instances of A.

 {[A] +} A tuple containing:

� one or more instances of A

� in an ordered array

� where each instance of A is optional (that is, may be
NULL).

 Exclusive-or �� A bit-wise exclusive-or (XOR) operation.

 Table 16: Notation

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 94 as of December 10, 1998

Draft Version 1.0.1

 Notation for Cryptographic Treatments

 Caveat The following tables introduce the notations for the hashing, signature, encryption, and

encapsulation cryptographic treatments which are used throughout the remainder of this
Programmer’s Guide. For additional information refer to SET Book 3: Formal Protocol
Definition and “Cryptographic Processing” on page 144.

 Hashing Table 17 summarizes the notation corresponding to the hashing and hashed-based operators

used by SET.

 Notation Operator Description

 HMAC (t, k) Keyed-hash 160-bit keyed-hash of tuple t using key k based on
HMAC-SHA-1

 HMAC (t, k) =
 SHA-1 ((k �� opad) | SHA-1 ((k �� ipad) | t))

 where:
� ipad is the byte 0x36 repeated 64 times; and
� opad is the byte 0x5C repeated 64 times.

 DD (t) DetachedDigest 160-bit SHA-1 hash of tuple t. Corresponds to
PKCS #7 DigestedData.

 L (t1, t2) Linkage A reference, pointer, or link to t2 is included with
t1; equivalent to the tuple { t1, H (t2) }

 Table 17: Notation for Hashing and Hash-Based Operators

 Signature Table 18 summarizes the notation corresponding to the signature operators used by SET.

 Notation Operator Description

 S (s, t) Signature The signature of entity s on tuple t, including the
plaintext of t.

 Corresponds to PKCS #7 SignedData.

 SO (s, t) Signature Only The signature of entity s on tuple t, but not
including the plaintext of t.

 Corresponds to PKCS #7 external signature
SignedData.

 Table 18: Notation for Signature Operators

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 95

Draft Version 1.0.1

 Notation for Cryptographic Treatments, continued

 Encryption Table 19 summarizes the notation corresponding to the encryption operators used by SET.

 Notation Operator Description

 E (r, t) Asymmetric Encryption Corresponds to the standard PKCS #7
EnvelopedData with t encrypted with fresh
symmetric key k and OAEP (k) encrypted
using the public key of entity r.

 EX (r, t, p) Extra Asymmetric
Encryption

 This is like E except that t and p are the two
parts of a message; t is the tuple subjected to
ordinary, symmetric encryption, and p is a
parameter subject to “extra” processing. The
t slot is called the ordinary slot of EX, and
the p slot (which holds OAEP ({ k, p })) is
called the extra slot of EX. EX does not link
t and p together; the operators derived from
EX provide the linkage.

 EXL (r, t, p) Extra Asymmetric
Encryption with Linkage

 This is like EX except that t is linked to p
and this linkage is subjected to ordinary,
symmetric encryption; equivalent to
EX (r, L (t, p), p })

 EH (r, t) Asymmetric Encryption
with Integrity

 This is like E except that the PKCS #7
envelope contains OAEP ({ k, H (t) })
for a guarantee of integrity when signature is
not available. Processing software shall
rehash t and check for match against the
H (t) in the PKCS #7 envelope.

 EXH (r, t, p) Extra Asymmetric
Encryption with Linkage
and Integrity

 This is like EX except with
OAEP ({ k, H (t), p }) in the PKCS #7
envelope and with the requirement that
processing software check H (t), as with
EH.

 EK (k, t) Symmetric Encryption The symmetric encryption of tuple t using
secret key k.

 Corresponds to an instance of PKCS #7
EncryptedData.

 Table 19: Notation for Encryption Operators

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 96 as of December 10, 1998

Draft Version 1.0.1

 Notation for Cryptographic Treatments, continued

 Encapsulation Table 20 summarizes the notation corresponding to the encapsulation operators used by

SET. These operators combine signature and encryption operators and are used on most
messages, facilitating security analysis of this protocol.

 Notation Operator Description

 Enc (s, r, t) Simple Encapsulation
with Signature

 Signed, then encrypted message.

 E (r, S (s, t))

 Corresponds to an instance of
PKCS #7 SignedData
encapsulated in EnvelopedData.

 EncK (k, s, t) Simple Encapsulation
with Signature and a
Provided Key

 Signed messages encrypted with a
known, secret key.

 EK (k, S (s, t))

 Corresponds to an instance of
PKCS #7 SignedData
encapsulated in EncryptedData.

 EncX (s, r, t, p) Extra Encapsulation with
Signature

 Two-part messages encrypted with
the first part of the message in the
ordinary (symmetric encryption)
slot of E and the second part of the
message in the extra (OAEP) slot
of E.

 EX (r, { t, SO (s, { t, p }) }, p)

 EncB (s, r, t, b) Simple Encapsulation
with Signature and
Baggage

 Signed, encrypted messages with
external baggage.

 { Enc (s, r, L (t, b)), b }

 EncBX (s, r, t, b, p) Extra Encapsulation with
Signature and Baggage

 Signed, E-encrypted, two-part
messages with baggage.

 { EncX (s, r, L (t, b), p), b }

 Table 20: Notation for Encapsulation Operators

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 97

Draft Version 1.0.1

 Section 3
Other Features

 Idempotency

 Definition When an operation can be executed any number of times, with no harm done, it is said to be

idempotent. From the SET perspective, idempotency is a property of how a receiver responds
to a message.

� Any request in SET for which a response is not received shall be sent again, since it is
impossible for the sender to know whether it was the request or the response that was lost.
The re-transmitted request shall be bit-wise identical to the original request message.

� Any entity receiving an idempotent request that it has already processed shall re-transmit
the original response message.

 In general, a duplicate message is not an error condition. (However, see “Response to
attacks” on 101.)

 Rationale The SET protocol is designed to work in environments where message delivery is not

guaranteed. If a SET application does not receive a response in a reasonable period of time
(as defined by the application or possibly in response to a user query), it sends the message
again. When the receiving SET application determines that it has previously processed the
same message, it retrieves the previous response and sends it again.

 Not all SET messages require idempotency. The Inquiry Request, for example, has been
designed to be sent at any time so it is not necessary for a Merchant to store every inquiry
request to determine if a duplicate is received; it simply returns the current status of the
transaction in the Inquiry Response. On the other hand, the Purchase Request does require
idempotency.

 A summary of per-message idempotency requirements is provided in Appendix C: “SET
Messages.”

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 98 as of December 10, 1998

Draft Version 1.0.1

 Idempotency, continued

 Retention of
messages

SET applications shall retain copies of idempotent request and response messages that have
been processed.

� A requester shall retain a bit-wise identical copy of a request message until a response has
been received or the application abandons processing of the message.

� A responder shall retain a bit-wise identical copy of a response message – as well as the
request to which it is responding – for a reasonable period of time after the most recent
transmission of the response. The length of time is determined by the application developer
based on the operating environment.

 interactive
(such as World
Wide Web)

A reasonable retention period will be measured in hours; for
example, the application could allow the installation
configuration to specify a retention period of one to four hours.

 non-interactive
(such as
electronic mail)

A reasonable retention period will be measured in days; for
example, the application could allow the installation
configuration to specify a retention period of one to fourteen
days.

If the retention period can be configured at the installation, the application shall enforce a
minimum retention period based on the operating environment.

Note that the retention time for idempotent messages should be no less than the timeout
period for rejecting messages as too old or too new.

 Description SET applications shall guarantee idempotency of the protocol by examining transaction

(XID) and request/response pair (RRPID) identifiers. The applications must distinguish
between those requests that are bit-wise identical (idempotent) and those that are either
processing errors or attempts at fraud.

 For example, a Payment Gateway will reject attempts to replay authorization requests from
merchants. It will detect these attempts by examining the RRPID of the authorization
request and XID of the embedded payment instruction, separately signed (or hashed) and
encrypted by the cardholder. examine incoming Authorization Requests to detect duplicate
XID/RRPID pairs and either send an identical response message (for bit-wise identical
requests) or reject an attempt by the merchant to reuse Payment Instructions for a second
Authorization Request.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 99

Draft Version 1.0.1

Idempotency, continued

 Detecting
idempotent
requests

 An application may use any method to detect idempotent requests.

 One possibility is to store the RRPID and SHA-1 hash of all messages. When a duplicate
RRPID is detected, the hash of the message can be generated and compared against the
stored value with a match indicating an idempotent request. Using this approach, the
application does not have to keep a complete copy of each incoming request; however, it
shall be capable of generating bit-wise identical responses.

 Duplicate
responses

 If multiple responses to an idempotent request are received, the recipient can ignore all such
responses after the first one.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 100 as of December 10, 1998

Draft Version 1.0.1

Idempotency, continued

 Response to
attacks

 A SET application is not required to respond to messages when it detects that it is being
subjected to a malicious flooding or spamming attack involving one or more idempotent SET
messages types. Application developers can establish their own criteria to detect such
malicious attacks. For example, an application might consider more than ten repetitions in
less than a minute to be a malicious attack.

 Scenarios Descriptions of likely scenarios involving idempotent messages follow. These scenarios

depict two transmissions of the same request, but depending on the conditions at the time of
the failure, the request may be repeated many times. Combinations of these scenarios are also
possible.

 Delayed
request or
response

An idempotent request is sent, but delivery of either the request or the response is delayed so
the receiver does not receive a timely response. The request is transmitted again. The
receiving system processes the first request, then re-transmits that response when it receives
the second request.

 From sender’s perspective: From receiver’s perspective:
 Request Request
 Request Response
 Response Request
 Response Response

 Lost request An idempotent request is sent, but the delivery of the message does not occur because of a

network failure. The request is transmitted again.

 From sender’s perspective: From receiver’s perspective:
 Request
 Request Request
 Response Response

 Lost response An idempotent request is sent and responded to, but the delivery of the response does not

occur because of a network failure. The request is transmitted again. The receiving system
processes the first request, then re-transmits that response when it receives the second
request.

 From sender’s perspective: From receiver’s perspective:
 Request Request
 Response
 Request Request
 Response Response

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 101

Draft Version 1.0.1

 Special Fields

 XID XID is intended as a statistically unique identifier assigned to a payment transaction so that

all messages of the transaction can be related to one another. It is a 20-byte string.

 XID does not change during the life of a transaction. The only exception is for a credit on a
transaction that has aged off of the merchants logs; in that case:

� The merchant generates a new XID (because the original XID is unknown).

� The merchant sets the value of AuthRRPID to zero (because the original AuthRRPID is
unknown).

XID example The example below demonstrates the correct XID and AuthRR PID throughout a transaction
which includes a credit request.

1. Cardholder sends PReq (XID = 5) to Merchant.

2. Merchant sends AuthReq (XID = 5, AuthRRPID = 10) to Payment
Gateway.

3. Payment Gateway sends AuthRes (AuthRRPID = 10) to Merchant.

4. Merchant sends PRes to Cardholder.

5. Merchant sends CapReq with one item (XID = 5, AuthRRPID = 10).

6. Payment Gateway sends CapRes (XID = 5, AuthRRPID = 10).

Later the Merchant submits a credit:

If the original transaction is still
available in the Merchant’s log,
 the credit request includes the
original XID and AuthRRPID :

If the original transaction has aged
off the Merchant’s log,

the credit request includes
a new XID and AuthRRPID :

7. Merchant sends CredReq (XID = 5,
AuthRRPID = 10).

Merchant sends CredReq (XID = 20,
AuthRRPID = 0).

8. Payment Gateway sends CredRes .

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 102 as of December 10, 1998

Draft Version 1.0.1

Special Fields, continued

BrandID BrandID is an important field used in both the payment and certificate management protocol
messages. It has two components:

brand name the brand of the payment card

product optional: the type of product within the brand

When product is included, it is separated from brand name by a colon (:) as follows:

brand name[:product]

In messages, BrandID shall be encoded using VisibleString if possible.

In certificates, BrandID shall be encoded using PrintableString if possible.

The separator (colon) between brand name and product is encoded as:

� 0x3A if BrandID is a VisibleString or PrintableString; or
�� 0x003A if BrandID is a BMPString.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 103

Draft Version 1.0.1

Root Public Key Distribution

Significance of
Root certificate

The security of the SET system depends ultimately on the authenticity of the certificates used
in the system. These certificates are verified by checking a chain of certificates, with the final
certificate in the chain being a single system-wide entity. Only through trust in the Root
certificate will trust in the SET system be maintained.

Initial
distribution of
Root key

The Root public key is initially distributed as a certificate with the SET software. This
certificate shall also contain a hash of the next Root public key. The initial distribution of the
Root certificate shall be self-signed and shall may be verified by an out-of-band mechanism
(as described in “Root key distribution and authentication” in Part II on page Error!
Bookmark not defined.). The chaining process for the Root certificates is based on hash
values rather than the distinguished name and serial number of the previous Root certificate.

If a Root key/certificate is not represented by the hash within the previous certificate, it shall
be treated like the initial Root certificate and requires out-of-band verification.

Root key
update

The Root key may be updated implicitly using the SET protocol; that is, in the course of
receiving ordinary SET transaction messages, you may receive a new Root key when
necessary. This is described in detail in “Root Certificate Update” in Part II on page Error!
Bookmark not defined..

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 104 as of December 10, 1998

Draft Version 1.0.1

Off-line Certificates

Certificate
provision
off-line

In the case of orders that are created off-line, such as those envisioned with CD-ROM
shopping, abbreviated protocols may be used that omit the initialization phase between the
Cardholder and Merchant. During this phase, the Merchant determines which certificates the
Cardholder already possesses and sends the Cardholder any missing certificates. With
abbreviated protocols expected in off-line shopping, these certificates will be delivered
off-line (for example, in the CD-ROM catalog).

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 105

Draft Version 1.0.1

Cert-PE

Definition Cert-PE is the certificate generated by the PCA that binds the Payment Gateway to the
proposed encryption public key provided in a certificate request (CertReq) message.
Cert -PE is used by other SET entities as follows:

� The Payment Gateway sends Cert-PE to the Merchant in any response message, if the
Thumbprints sent in the Merchant’s request indicate that a new Cert -PE is needed.

� The Merchant sends Cert-PE to the Cardholder on behalf of the Payment Gateway.

� The Cardholder uses Cert-PE to encrypt the Payment Instructions, regardless of whether
the cardholder has a certificate or not.

The certThumbs will include the Thumbprint corresponding to Cert -PE. Although
Cert-PE is not referenced explicitly in any SET message, it is an optional certificate that
may be included in the PKCS #7 SignedData block of the corresponding certificate response
(CertRes) any SET message when it is necessary to transmit the certificate. The
corresponding Thumbprint, PEThumb , appears in the message to indicate which of the
included certificates is Cert-PE .

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 106 as of December 10, 1998

Draft Version 1.0.1

Secure Data Storage

Data to store
securely

Certain data requires extra protection and shall be stored in secure data storage, including:

Cardholder Merchant Payment
Gateway

CA

private keys x x x1 x1

CardSecret 2 x x

payment card number and
expiration date

x x3 x x

AcqBackKeyData x

Notes 1. Secret key generation and storage shall use tamper resistant hardware cryptographic
modules. See pages 41 and 42.

2. CardSecret , the shared secret between Cardholder and Issuer, is described in
“Transaction Validation by Non-SET Systems” on page 79.

3. Merchants receive payment card information only if MerAuthFlag in the MerchantData
private extension of the Merchant certificate is TRUE. See “MerchantData Private
Extension” on page Error! Bookmark not defined. in Part II.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 107

Draft Version 1.0.1

Chapter 5
Section 4

Processing

Overview

Purpose This chapter describes step-by-step processing of common cryptographic treatments, as well
as other common processing used by the payment and certificate management protocol
descriptions in this Programmer’s Guide.

Organization This chapter includes two sections:

Section Contents Page

Non-Cryptographic
Processing

Provides processing descriptions for sending
and receiving a message, creating and
processing Thumbprints, comparing BrandIDs,
certificate chain validation, and SET error
processing.

109

Cryptographic Processing Describes processing for cryptographic
treatments and operators.

144

Guideline In general, be strict generating; be permissive receiving. That is, generate messages that
precisely match your understanding of the protocol, but when processing inbound messages,
avoid imposing unnecessary restrictions.

For example, one application may strip trailing spaces while another does not. Regardless of
the way your application handles trailing spaces, be prepared to deal with messages from
applications that have made a different choice.

Note: Any data that is subject to authentication (hashing or signing) is not flexible and the
recipient’s copy must be the same as the sender’s copy.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 108 as of December 10, 1998

Draft Version 1.0.1

Section 1
Non-Cryptographic Processing

Overview

Organization This section includes the processing descriptions listed below.

The description of cryptographic processing begins on page 144.

Processing Descriptions Page
Send Message 110

Receive Message 114

Thumbprints 119

Comparing BrandIDs 121

Certificate Chain Validation 123

SET Error Processing 134

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 109

Draft Version 1.0.1

Send Message

Create
MessageWrapper

This procedure represents the standard processing required each time a message is sent.
SET applications shall implement this procedure, or functionally equivalent procedures, for
all messages sent.

Step Action

1 Receive as input:

 reci p the recipient of the message

 msg the SET Message

 ext an instance of MsgExtensions (optional)

 rrpid the RRPID included in the message (optional: may not be
available when sending Error message)

 lid- C Cardholder’s local ID (optional)

 lid- M Merchant’s local ID (optional)

 xID globally unique ID (optional)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 110 as of December 10, 1998

Draft Version 1.0.1

Send Message, continued

Create MessageWrapper (continued)

Step Action

2 Construct messageIDs:

lid-C lid-C if present

lid-M lid-M if present

xID xID if present

3 Construct MessageHeader:

version 1

revision 0

date the current date and time (see “System Clock
Differences” on page 66)

messageIDs result of Step 2

rrpid rrpid

swIdent vendor software identification

4 Construct MessageWrapper:

messageHeader the result of Step 3

message msg

mwExtensions ext

5 If the message requires idempotency processing (as described in “ Idempotency”
on page 98), save the result of Step 4.

6 Pass the message from Step 4 to the transport mechanism for delivery to recip .
Depending on the transport mechanism, the message may be further wrapped
(for example, with a MIME or HTTP header).

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 111

Draft Version 1.0.1

Send Message, continued

MessageWrapper data

MessageWrapper {MessageHeader, Message, [MWExtensions]}
MessageHeader {Version, Revision, Date, [MessageIDs], [RRPID],

SWIdent}
Message <

 PInitReq, PInitRes,
 PReq, PRes,
 InqReq, InqRes,
 AuthReq, AuthRes,
 AuthRevReq, AuthRevRes,
 CapReq, CapRes,
 CapRevReq, CapRevRes,
 CredReq, CredRes,
 CredRevReq, CredRevRes,
 PCertReq, PCertRes,
 BatchAdminReq, BatchAdminRes,
 CardCInitReq, CardCInitRes,
 Me-AqCInitReq, Me-AqCInitRes,
 RegFormReq, RegFormRes,
 CertReq, CertRes,
 CertInqReq, CertInqRes,
 Error
>

MWExtensions Appropriate where:

� the data in the extension is general purpose information about
SET messages, or

� the contents of the message are encrypted and the extension
contains non-financial data that does not require
confidentiality.

Note: The message wrapper is not encrypted so this extension
must not contain confidential information. Also, there is no
implicit integrity checking on the contents; it is the responsibility
of the extension definition to include integrity checking if it is
necessary.

Table 21: MessageWrapper Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 112 as of December 10, 1998

Draft Version 1.0.1

Send Message, continued

MessageWrapper data (continued)

Version Version of SET message
Revision Minor revision of SET message
Date Date and time of message generation
MessageIDs {[LID-C], [LID-M], [XID]}
RRPID Request/response pair ID for this cycle
SWIdent String identifying the software (vendor and version) initiating the

request.
LID-C Local ID; convenience label generated by and for Cardholder

system
LID-M Local ID; convenience label generated by and for Merchant

system
XID Globally unique ID generated by Merchant in PInitRes or by

Cardholder in PReq

Table 21: MessageWrapper Data, continued

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 113

Draft Version 1.0.1

Receive Message

Receiving entity responsibilities
 The receiving entity shall ensure that the message contents have been properly formatted
and encapsulated based on the message type. Additional data such as certificates, CRLs, and BCIs shall be
extracted from the message to authenticate any digital signatures applied by the sending entity. The receiving
entity’s system cache should be updated to reflect these new certificates, CRLs, and BCIs.

Process
MessageWrapper

Step Action

1 Receive as input:

 msg Wrpr an instance of MessageWrapper (received from the
transport layer Depending on the transport mechanism,
with the a transport wrapper may need to be removed)

2 If the message is too big to be processed, invoke “Create Error Message” on
page 137 with the following input:

errorCode messageTooBig

3 DER decode msg Wrpr .messageHeader . If decoding fails, invoke “Create
Error Message” on page 137 with the following input:

errorCode badMessageHeader

Note: The application will be unable to populate MessageWrapper fields in the
Error message.

4 Validate the following contents of msg Wrpr .messageHeader :

version 1

revision 0

date a date and time within the range supported by the
application

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

errorCode version or revision versionTooOld or
versionTooNew

date messageTooOld or
messageTooNew

For further information, see “Backward Compatibility” on page 65 and “System
Clock Differences” on page 66.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 114 as of December 10, 1998

Draft Version 1.0.1

Receive Message, continued

Process MessageWrapper (continued)

Step Action

5 Determine the type of Message . (Depending on the application’s
implementation of ASN.1, this may require DER decoding of
msg Wrpr .message as described in Step 10.) If the message type is not
supported by the application, invoke “Create Error Message” on page 137 with
the following input:

errorCode messageNotSupported

(See Appendix C: “SET Messages” for a description of mandatory and optional
messages.)

6 If the message type does not require idempotency processing as defined in
Appendix C: “SET Messages,” continue with Step 10.

7 If the message is a response:

� Determine if a request for the same RRPID has been transmitted. If not, invoke
“Create Error Message” on page 137 with the following input:

errorCode unknownRRPID

� Determine if this is the first response received. If a response for the same
RRPID has been successfully processed, stop processing the message.

� Continue with Step 10.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 115

Draft Version 1.0.1

Receive Message, continued

Process MessageWrapper (continued)

Step Action

8 Determine if a previous request has been processed with the same RRPID. If not,
continue with Step 10.

9 Compare the new request to the previously-processed request with the same
RRPID. See “Detecting idempotent requests” on page 100 for additional
information.

If the requests are bit-wise identical, send a bit-wise identical copy of the prior
response and stop processing the message.

If the request is not a duplicate, invoke “Create Error Message” on page 137 with
the following input:

errorCode idempotencyFailure

10 DER decode msg Wrpr .message . If decoding fails, invoke “Create Erro r
Message” on page 137 with the following input:

errorCode decodingFailure

11 If msg Wrpr .mwExtensions contains a critical message extension that the
application does not recognize, invoke “Create Error Message” on page 137 with
the following input:

errorCode unrecognizedExtension

errorOID the extnID field of the extension

12 Purge the untrusted cache.

 Periodically, purge trusted cache of expired certificates, CRLs, and BCIs.

13 Process the message by invoking the procedure indicated in Table 22 on page 118
with the following input:

 hdr msg Wrpr .messageHeader

 msg msg Wrpr .message

 ext msg Wrpr .mwExtensions

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 116 as of December 10, 1998

Draft Version 1.0.1

Receive Message, continued

Processing by
Message

To process Message : ...see Page:

PInitReq Error! Bookmark not defined.

PInitRes Error! Bookmark not defined.

PReq Error! Bookmark not defined.

PRes Error! Bookmark not defined.

InqReq Error! Bookmark not defined.

InqRes Error! Bookmark not defined.

AuthReq Error! Bookmark not defined.

AuthRes Error! Bookmark not defined.

AuthRevReq Error! Bookmark not defined.

AuthRevRes Error! Bookmark not defined.

CapReq Error! Bookmark not defined.

CapRes Error! Bookmark not defined.

CapRevReq Error! Bookmark not defined.

CapRevRes Error! Bookmark not defined.

CredReq Error! Bookmark not defined.

CredRes Error! Bookmark not defined.

CredRevReq Error! Bookmark not defined.

CredRevRes Error! Bookmark not defined.

PCertReq Error! Bookmark not defined.

PCertRes Error! Bookmark not defined.

BatchAdminReq Error! Bookmark not defined.

BatchAdminRes Error! Bookmark not defined.

Table 22: Processing by Message

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 117

Draft Version 1.0.1

Thumbprints

Overview As described on page 68, Thumbprints have several uses in SET. This section provides
procedures for some of the uses as follows:

for this use: procedure included here: procedure elsewhere:

to minimize certificates,
CRLs, and BCIs exchanged

“Create set of Thumbprints
for request”

“Process set of Thumbprints
in request”

to help ensure that an
unsigned message was not
altered

The Thumbprints are
copied from the request to
the response as described
in the processing steps for
the specific message in
Part II and Part III.

to indicate specific certificates
included in a message

“Process single Thumbprint” Instructions for including
the Thumbprint in the
message are included in
the processing steps for
the specific message in
Part II and Part III.

to indicate a certificate, CRL,
or BCI that caused processing
to fail

“Certificate Chain
Validation” on page 123

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 118 as of December 10, 1998

Draft Version 1.0.1

Thumbprints, continued

 Create set of
Thumbprints
for request

 Step Action

 1 Receive as input:

 brand the brand of the transaction

 bin the BIN of the transaction

 This procedure uses the following internal variables:

 thumbList Thumbprints (of certificates, CRLs, and BCIs) to
be included in the request message

 2 Initialize thumbList so that it contains zero entries.

 3 For each certificate in the trusted cache that is pertinent for processing the
response message and for validating the certificate chain, examine the
CertificateType extension. If the certificate type is:

 rca Add the Thumbprint of the certificate to thumbList .

 bca or gca If brand name in the subject Name matches brand , add
the Thumbprint of the certificate to thumbList .

 mer If:

� this is a cardholder application, and

� the merchant name in the MerchantData extension
matches the merchant’s name, and

� the brand name in the subject Name matches brand ,

 then add to thumbList the Thumbprint of the certificate
and of any certificate in its chain below the brand CA.

 pgwy If:

� the brandID in the subject Name matches brand , and

� the BIN in the subject Name matches bin (if
provided),

 then add to thumbList the Thumbprint of the certificate
and of any certificate in its chain below the brand CA.

 4 For each CRL in the trusted cache that is pertinent for processing the response
message and for validating the certificate chain whose brandID in the Issuer field
matches brand , add its Thumbprint to thumbList .

 5 For each BrandCRLIdentifier in the trusted cache that is pertinent for processing
the response message and for validating the certificate chain whose brandID
matches brand , add its Thumbprint to thumbList .

 6 Return thumbList .

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 119

Draft Version 1.0.1

 Comparing BrandIDs

 Comparison of
BrandIDs

 BrandID contains a brand name and an optional product. Instances of BrandID appear both
in message fields and in certificate subject fields.

 While processing messages, SET applications must compare two instances of BrandID to
determine if they match. This comparison is complicated by two factors:

� the presence of the product component is optional; and
� the value can be encoded as either VisibleString or BMPString in SET messages; and
� the value can be encoded as either PrintableString or BMPString in SET certificates.

The procedure to compare two instances of BrandID is provided below.

Note: Requirements for encoding of BrandID are given on page 103.

Compare
BrandIDs

Step Action

1 Receive as input:

hier Boolean: TRUE if there is a hierarchical relationship
between brand1 and brand2 (for example, if one
BrandID belongs to a CA certificate and the other to
an end entity certificate)

brand1 if hier is TRUE, the BrandID that is higher in the
hierarchy; otherwise, either of the two instances of
BrandID to be compared

brand2 if hier is TRUE, the BrandID that is lower in the
hierarchy; otherwise, either of the two instances of
BrandID to be compared

2 If one of brand1 and brand2 uses BMPString and the other does not (as
indicated by the DER tag of each), continue with Step 3. Otherwise, convert
brand1 and brand2 to BMPString.

Note to reviewers: this will be updated to describe how to do the conversion to
BMPString.

3 Compare brand 1.brand to brand2 .brand. (As used here, “brand” indicates the
beginning of BrandID , up to but not including the colon.) If they do not match,
then compare fails and processing stops.

4 If both brand1 .product and brand2 .product exist, compare them. If they do not
match, then compare fails and processing stops. (“product” indicates that part of
BrandID that follows the colon, if present.)

5 If hier is FALSE, continue with Step 7.

6 If brand1 .product exists but brand2 .product does not, then compare fails and
processing stops.

7 The comparison of the two instances of BrandID is acceptable.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 120 as of December 10, 1998

Draft Version 1.0.1

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 121

Draft Version 1.0.1

Certificate Chain Validation

Purpose Each SET application shall fully validate each certificate, CRL, and BCI prior to adding it to
the application’s trusted cache or using it in SET processing.

Certificate
chain definition

Each certificate is linked to the signature certificate of the signing CA. The path through
which the certificates are validated is called the “certificate chain.”

The SET certificate chain is comprised of the set of certificates from the end entity to the
Root certificate, plus all of the Root’s predecessors back to the initial Root certificate.

Overview The validation of the certificate chain requires that:

� each certificate in the path – from the end entity certificate through the initial Root
certificate – is validated, and

� each certificate correctly maps to the CA that issued the certificate.

Processing Validation requirements shall be enforced for all levels of the chain. For example, a
Cardholder application shall validate the Merchant, Merchant CA, Geopolitical CA
(if applicable), Brand CA, and Root CA certificates and related payment card brands.

The validation process includes:

� Brand CRL Identifier (BCI) processing
� Certificate Revocation List (CRL) processing
� X.509 certificate validation
� SET certificate validation

In practice, it is assumed that the validation process will stop at a level that has been
previously validated.

All SET software shall validate certificate dates as part of the certificate chain validation
process. SET software shall provide a warning mechanism for expiring certificates and shall
prevent their attempted use after expiration.

Year 2000 For dates and times, X.509 certificates use UTCTime, which has a two-digit year. SET relies
on the consensus in the X.509 community (at the time the specification was published) that
the two-digit year in dates for certificates and CRLs specifies a year between 1950 and 2049.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 122 as of December 10, 1998

Draft Version 1.0.1

Certificate Chain Validation, continued

X.509
requirements

SET certificate chain validation is performed according to the processing requirements
specified in Section 12.4.3 of Amendment 1 to X.509 as well as the additional SET
requirements specified below.

Comparing EE
certificate to
signing CA
certificate

In addition to the certificate chain processing requirements of X.509, the following SET
constraints on the certificate chain shall be met:

� The authorityCertIssuer and authorityCertSerialNumber fields in the
authorityKeyIdentifier extension of the subordinate certificate shall match the issuer Name
and serialNumber fields of the signing CA certificate.

� The validity dates in the subordinate certificate and in its privateKeyUsagePeriod
extension shall be within the validity dates of the signing CA certificate.

� The notBefore validity date in the subordinate certificate shall be within the validity dates
in the privateKeyUsagePeriod extension of the signing CA certificate.

� The organizationName of the subject Name of each certificate shall meet the criteria
described in “Comparing BrandIDs” on page 121.

� The CertPolicyId of the certificatePolicies extension of the certificates shall be related as
described in “Certificate generation” on page Error! Bookmark not defined. in Part II.

� The signature verifies (that is, the issuer Name of the subordinate certificate matches the
subject Name of the signing CA certificate).

End entity
certificate
validation

In addition to the certificate chain processing requirements of X.509, the following SET
requirements for end entity certificates shall be validated:

� The cA field of the basicConstraints extension is FALSE, indicating end entity.

All certificate
validation

In addition to the certificate chain processing requirements of X.509, the following SET
requirements for CA all certificates shall be validated:

� The KeyUsage field of the keyUsage extension is valid for the intended purpose.

� The certificateType private extension corresponds with the context in which the certificate
is being used.

� All required extensions are present. See “End Entity Certificate Extension” on page Error!
Bookmark not defined. and “CA Certificate Extensions” starting on page Error!
Bookmark not defined. in Part II.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 123

Draft Version 1.0.1

Certificate Chain Validation, continued

Diagram of
certificate
comparison

Figure 9 provides a logical view of the certificate data elements, with an emphasis on the data
elements used for certificate chain validation. Arrows indicate some of the fields which are
compared.

X.509 Cer t i f i ca te :
vers ion
se r ia lNumber
A lgor i thmIdent i f ie r
i ssue r Name
val id i ty
 no tBe fo re
 no tA f te r
sub jec t Name
 o rgan iza t ionName
 brand name
 product
sub jec tPub l i cKey In fo
i ssuerUn ique ID
sub jec tUn ique ID

X.509 Ex tens ions :
author i tyKeyIdent i f ie r
 keyIdent i f ier
 author i tyCert Issuer
 au thor i tyCer tSer ia lNumber
k e y U s a g e
 K e y U s a g e
pr i va teKeyUsagePer iod
 no tBe fo re
 no tA f te r
cer t i f i ca tePol ic ies
 Cer tPol icy ID
 qual i f ier
sub jec tA l tName
bas icCons t ra in ts
 c A
 pa thLenCons t ra in t
i ssue rA l tName

Pr iva te Ex tens ions :
[vary accord ing to ent i ty]

X.509 Cer t i f i ca te :
vers ion
se r ia lNumber
A lgor i thmIdent i f ie r
i ssue r Name
val id i ty
 no tBe fo re
 no tA f te r
sub jec t Name
 o rgan iza t ionName
 brand name
 p roduc t
sub jec tPub l i cKey In fo
i ssuerUn ique ID
sub jec tUn ique ID

X. 509 Ex tens ions :
author i tyKeyIdent i f ie r
 keyIdent i f ier
 author i tyCert Issuer
 au thor i tyCer tSer ia lNumber
k e y U s a g e
 K e y U s a g e
pr i va teKeyUsagePer iod
 no tBe fo re
 no tA f te r
cer t i f i ca tePol ic ies
 Cer tPol icy ID
 qual i f ier
sub jec tA l tName
bas icCons t ra in ts
 c A
 pathLenConst ra in t
i ssue rA l tName

Pr iva te Ex tens ions :
[vary accord ing to ent i ty]

Certificate Si gnin g CA Certif icate

Figure 9: Certificate Comparison

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 124 as of December 10, 1998

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify BCI

Step Action

1 Receive as input:

newBci a new brandCRLIdentifier (optional)

brand the payment card brand whose BCI is being verified

This procedure uses the following internal variables:

bci the current BCI

2 Retrieve the BCI for brand from the trusted cache and designate it as bci .

3 If newBci is specified, continue with Step 4. Otherwise, continue with Step 12.

4 If newbci .sequenceNum is greater than bci .sequenceNum, continue with Step 5.
Otherwise, remove newBci from the untrusted cache and continue with Step 12.

5 Validate the following contents of newBci :

algorithm algorithm sha1-with-rsa-signature

parameters NULL

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

errorCode unsupportedAlgorithm

errorThumb SHA-1 hash of newbci .toBeSigned

errorOID the algorithm field

6 Locate the Brand CA CRL signing certificate.

� Search the trusted cache for a certificate whose:

� certificateType is bca, and
� KeyUsage includes crlSign.

� If no certificate was found, search the untrusted cache for a certificate
matching those criteria. If found, invoke “Verify Certificate” on page 131 with
the following input:

cert the certificate from the untrusted cache

If no certificate was found, invoke “Create Error Message” on page 137 with the
following input:

errorCode missingCertificateCRLorBCI

errorThumb SHA-1 hash of newbci .toBeSigned

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 125

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify BCI (continued)

Step Action

7 Decrypt newbci .signature using the public key from the certificate found in
Step 5.

8 Compute the SHA-1 hash of newbci .toBeSigned.

9 Compare the result of Step 7 to the result of Step 8. If the values are not the
same, invoke “Create Error Message” on page 137 with the following input:

errorCode invalidSignature

errorThumb the result of Step 8

10 If the present date and time are not between newBci .notBefore and
newBci .notAfter, invoke “Create Error Message” on page 137 with the
following input:

errorCode invalidCertificateCRLorBCI

errorThumb the result of Step 8

11 Delete bci and its thumbprint from the trusted cache. Move newBci and its
Thumbprint to the trusted cache.

Designate newBci as bci .

Continue with Step 13.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 126 as of December 10, 1998

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify BCI (continued)

Step Action

12 If the present date and time are outside the range of bci. notBefore and
bci. notAfter, invoke “Create Error Message” on page 137 with the following
input:

errorCode invalidCertificateCRLorBCI

errorThumb the Thumbprint of bci

13 For each CRL named on the BCI:

� Search the trusted cache for a CRL whose

� issuer Name matches bci .crlIdentifierSeq.issuerName and
� CRLNumber extension matches bci .crlIdentifierSeq.crlNumber.

� If no CRL was found, search the untrusted cache for a CRL matching those
criteria. If found, invoke “Verify CRL” on page 129 with the following input:

newCrl the CRL found in the untrusted cache

bci bci

� If found and if the present date and time are outside the range of thisUpdate
and nextUpdate of the CRL, invoke “Create Error Message” on page 137
with the following input:

errorCode expiredCertificateCRLorBCI

errorThumb the Thumbprint of the CRL

� If found and if newCrl .crlNumber is greater than or equal to crlNumber of the
same CRLIdentifier:

� delete crl (if found in Step 2) from the trusted cache, and
� move newCrl and its Thumbprint to the trusted cache.

If any CRL listed on the BCI was not found in either the trusted or untrusted
cache, invoke “Create Error Message” on page 137 with the following input:

errorCode missingCertificateCRLorBCI

errorThumb the Thumbprint of the BCI

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 127

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify CRL

Step Action

1 Receive as input:

newCrl an instance of CRL

bci the current BCI for this brand

This procedure uses the following internal variables:

crl the current CRL

2 Search the trusted cache for a CRL whose issuer is newCrl .issuer. If found:

� designate it as crl , and

� if newCrl .crlNumber is less than or equal to crl .crlNumber, remove newCrl
from the untrusted cache and return.

3 Validate the following contents of newCrl :

algorithm algorithm sha1-with-rsa-signature

parameters NULL

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

errorCode unsupportedAlgorithm

errorThumb SHA-1 hash of newCrl .toBeSigned

errorOID the algorithm field

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 128 as of December 10, 1998

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify CRL (continued)

Step Action

4 Locate the CRL signing certificate.

� Search the trusted cache for a certificate whose:

� subject Name matches newCrl .issuer,
� issuer Name and serialNumber match the values of authorityCertIssuer and

authorityCertSerialNumber in the AuthorityKeyIdentifier extension of
newCrl ,

� basicConstraints.cA is TRUE, and
� KeyUsage includes crlSign.

� If no certificate was found, search the untrusted cache for a certificate
matching those criteria. If found, invoke “Verify Certificate” on page 131 with
the following input:

cert the certificate from the untrusted cache

If no certificate was found, invoke “Create Error Message” on page 137 with the
following input:

errorCode missingCertificateCRLorBCI

errorThumb SHA-1 hash of newCrl .toBeSigned

5 Decrypt newCrl .signature using the public key from the certificate found in
Step 4.

6 Compute the SHA-1 hash of newCrl .toBeSigned.

7 Compare the results of Step 5 to the results of Step 6.

� If the values match:

� Delete crl and its Thumbprint from the trusted cache.
� Move newCRL and its Thumbprint to the trusted cache.

� If the values are not the same, invoke “Create Error Message” on page 137
with the following input:

errorCode invalidSignature

errorThumb the result of Step 6

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 129

Draft Version 1.0.1

Certificate Chain Validation, continued

Checking
certificates
against a CRL

A given certificate shall be deemed to be included on a CRL if:

this value in the certificate: matches this value in the CRL:

issuer issuer

serialNumber revokedCertificates.CertificateSerialNumber

Verify
certificate

Step Action

1 Receive as input:

cert an instance of Certificate

2 Validate the certificate according to the rules specified in Section 12.4.3 of
Amendment 1 to X.509 and using the additional SET chain validation steps
specified starting on page 123. When the validation requires another certificate:

� Search the trusted cache for a certificate whose:

� subject Name matches cert .issuer, and
� serialNumber matches

cert .AuthorityKeyIdentifier.authorityCertSerialNumber

� If no certificate was found, search the untrusted cache for a certificate
matching these criteria. If found, invoke “Verify Certificate” on page 131 with
the following input:

cert the certificate from the untrusted cache

The following input is provided to the X.509 process:

trusted public key The set shall contain the key described in
Appendix R. Applications may support other
certification hierarchies as well, adding those keys
to this set.

initial-policy-set The set shall contain id-set-policy-root and may
contain other policies.

initial-explicit-
policy

The value of this indicator is determined by local
policy.

initial-policy-
mapping-inhibit

The value of this indicator is determined by local
policy.

Verify that the certificate extensions KeyUsage , CertificatePolicies ,
PrivateKeyUsage , and AuthorityKeyIdentifier are being used in accordance
with X.509.

(continues)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 130 as of December 10, 1998

Draft Version 1.0.1

Certificate Chain Validation, continued

Verify certificate (continued)

Step Action

2 (cont) If errors are encountered, invoke “Create Error Message” on page 137 with the
following input:

errorCode As specified in Table 23 on page 133.

errorThumb The Thumbprint of the certificate that failed. If the
failure results from comparing an entity certificate to
that of the issuing CA, the Thumbprint of the entity
certificate shall be used. (For
missingCertificateCRLorBCI, you may include the
Thumbprint of the certificate that was being validated
when the error was encountered.)

For a signature validation failure, populate
errorThumb with the locally generated digest.

errorOID If the error resulted from evaluating an extension, the
object identifier of that extension; otherwise, this field
does not appear.

3 If no certificate was found in Step 2, invoke “Create Error Message” on
page 137 with the following input:

errorCode missingCertificateCRLorBCI

errorThumb SHA-1 hash of newCrl .toBeSigned the certificate
being validated when a new certificate was required

4 If no errors were encountered in Step 2, move the certificate to the trusted cache.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 131

Draft Version 1.0.1

Certificate Chain Validation, continued

Certificate error
processing

Table 23 defines the value of ErrorCode for input to SET error processing resulting from
certificate chain validation failures.

Use this value: ...if any of these failures occurs:

invalidCertificateCRLorBCI The notBefore field has a value that is later than the current date and time.

The certificate subject and certificate issuer names do not chain correctly.

The certificate’s notBefore date is not within the PrivateKeyUsagePeriod of its
CA certificate.

The certificate’s validity period is not within the validity period of its CA
certificate.

The validation fails for any of the certificate extensions AuthorityKeyIdentifier,
BasicConstraints, CertificatePolicies, CertificateType, KeyUsage, and
PrivateKeyUsagePeriod.

The certificate does not contain required extensions.

The policy qualifier of CertificatePolicies does not inherit
AdditionalPolicy.policyOID or AdditionalPolicy.policyAddedBy.

CertificatePolicies contains AdditionalPolicy.policyQualifier with fields that are
not inherited.

The BrandID s do not chain correctly.

The thisUpdate field has a value that is later than the current date and time.

expiredCertificateCRLorBCI The notAfter field has a value that is earlier than the current date and time.

The nextUpdate field has a value that is earlier than the current date and time.

revokedCertificateCRLorBCI The certificate has been revoked.

missingCertificateCRLorBCI A certificate with a subject name matching the issuer name of a certificate to be
validated is not found in the trusted cache or in the message being processed.

The value of CRLNumber is less than that specified in the BCI.

signatureFailure The signature does not verify.

unrecognizedExtension The certificate, CRL, or BCI contains a critical extension that the application does
not recognize.

Table 23: Enumerated Values for ErrorCode in Certificate Chain Validation

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 132 as of December 10, 1998

Draft Version 1.0.1

SET Error Processing

Introduction From the perspective of a SET participant, SET flow always occurs in message pairs. Each
message transmitted by a requester is answered by a responder. The error flow (unlike all
the other flows) is defined with respect to senders and receivers because it is used when any
participant cannot reliably identify an incoming message.

Error indicates that a receiver rejects a message because it fails format or content
verification tests; that is, the message is corrupted or unintelligible. The receiver sends
Error (rather than, for example, a negative response code) when the receiver cannot trust
the fields of an incoming message. In general, Error shall be used only:

� to respond to the direct sender of the message, and
� when it is not possible to clearly isolate the error to an incorrect value of a field.

Sender Receiver

 (any message – whether request or response – except Error)

 Error

 Figure 10: Error Message Flow

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 133

Draft Version 1.0.1

 SET Error Processing, continued

 When NOT to
send Error

An Error message shall not be used:

for normal business
results

Normal business results such as a declined authorization are
indicated by explicit codes in standard SET response messages.

in response to an
Error message

A valid SET message contains:

� a tag of 0x30 (a SEQUENCE) and a length for the entire message
(MessageWrapper MessageHeader plus Message body).
The MessageWrapper , which contains:

� a tag of 0x30 (a SEQUENCE) followed by the length and
content of the MessageHeader ,

� a tag of 0xA0 (a context specific tag of [0]) followed by the tag
for the type of message then the length and content of the
Message , and

� optionally, a tag of 0xA1 (a context specific tag of [1])
followed by the length and content of any message extensions.

If the tag for the type of message is 0xBF8767 (a context specific
tag of 999), which indicates an Error message, a SET application
shall never send a response, even if the message appears to be
malformed. This is to prevent loops where one Error message
triggers another.

in response to
excessive duplicate
messages

Enough information appears in cleartext in the message wrapper
MessageHeader that an application can detect whether a message
is a retransmission or not. The receiver’s reaction to a duplicate
message depends on:

� the idempotency property of the message type,
� the number of duplicated messages,
� the source of the duplicate message, and
� the frequency of duplicate messages.

If a system suspects that it is being subjected to a flooding or
spamming attack, duplicate messages may be ignored.

in response to
excessive unusable
messages from a
single sender

To mitigate the effects of denial-of-service attacks, software may
limit the number of Error messages that are sent. For example,
software may elect to send only one Error message per day to a
given sender.

in response to a
non-SET message

Any messages that do not appear to be SET messages should be
ignored.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 134 as of December 10, 1998

Draft Version 1.0.1

SET Error Processing, continued

When to send
Error

in response to SET
request message

Merchant, Payment Gateway, and CA software should send an Error
message when encountering a low-level processing error on a SET
request message.

in response to SET
response message

Cardholder, Merchant, and Payment Gateway software should send
an Error message when encountering a low-level processing error on
a SET response message.

The Error message should be sent to a diagnostic log port if one has
been defined for the system that sent the response. (Defining a
diagnostic log port allows a separate system to receive Error
messages so that the primary system may be devoted to processing
SET message pairs.) Applications should avoid sending Error
messages to the same port as request SET messages; however, if no
diagnostic log port is available, the application may send one Error
message per day to the request normal port. (The diagnostic log port
is discussed further in the SET External Interface Guide. See
“Related documentation” in the Preface.)

Error message
in response to
response

The SET protocol is based on request/response pairs. The Error message does not conform
to this paradigm, since it may be a response to either a request or a response. The former case
poses no difficulty. However, in the latter case, difficulties may arise if the underlying
transport is based on a request/response paradigm, as in a World Wide Web browser. In this
case, the Error message may be sent as a request message, and the SET protocol will not
require a response message; as a result, the underlying protocol may time out. It is recognized
that the operational constraints of a World Wide Web browser may require user permission
for an Error message to be sent. This is acceptable, but not encouraged.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 135

Draft Version 1.0.1

SET Error Processing, continued

Create Error
message

When an application encounters a SET error, it shall create an Error message as described
below.

Step Action

1 Receive as input:

errorCode a value indicating the error that was detected

errorOID an object identifier related to the error that was
detected (optional)

errorThumb a thumbprint related to the error that was detected
(optional)

2 Construct ErrorMsg as either:

messageHeader the header of the offending message

badWrapper the entire offending message, up to the size
restriction of 20,000 bytes (optional)

The choice of whether to copy only the header (messageHeader) or the entire
message (badWrapper) is left to each implementation. Providing badWrapper
gives the system that receives the message the most possible information.

3 Construct ErrorTBS:

errorCode errorCode

errorNonce a fresh nonce

errorOID errorOID

errorThumb errorThumb

errorMsg result of Step 2

4 If a signature certificate is available, invoke “Compose SignedData (S)” on
page 153 with the following input:

s EE’s responder’s signature certificate

t result of Step 3

type id-set-content-ErrorTBS

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 136 as of December 10, 1998

Draft Version 1.0.1

SET Error Processing, continued

Create Error message (continued)

Step Action

5 Invoke “Send Message” on page 110 with the following input:

recip the entity that sent the offending message

msg result of Step 4 (or Step 3, if Step 4 was not
performed)

ext any message extension(s) required to support
additional business functions (optional)

rrpid the RRPID from the MessageHeader of the
offending message if available (optional)

lid-C the lid-C from the MessageHeader of the
offending message if available (optional)

lid-M the lid-M from the MessageHeader of the
offending message if available (optional)

xID the xID from the MessageHeader of the
offending message if available (optional)

6 Abort processing the rest of the message.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 137

Draft Version 1.0.1

SET Error Processing, continued

Error message
data

The following fields are defined for the Error message:

Error < SignedError, UnsignedError >
SignedError S(EE, ErrorTBS)
UnsignedError ErrorTBS

The unsigned version of Error shall only be used if the entity
does not have a valid signature certificate or is temporarily
unable to generate signatures (such as when there is a
cryptographic hardware failure).

ErrorTBS {ErrorCode, ErrorNonce, [ErrorOID], [ErrorThumb],
ErrorMsg}

ErrorCode Enumerated code.

ErrorNonce A nonce to ensure the signature is generated over
unpredictable data.

ErrorOID The object identifier of an object (extension, content type,
attribute, etc.) that caused the error.

ErrorThumb The thumbprint of the certificate, CRL or BrandCRLIdentifier
that caused the error.

ErrorMsg <MessageHeader, BadWrapper>
MessageHeader The message header of the message that produced the error.

BadWrapper The message wrapper of the message that produced the error
(up to 20,000 bytes).

Table 24: Error Message Data

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 138 as of December 10, 1998

Draft Version 1.0.1

SET Error Processing, continued

ErrorCode The following values are defined for ErrorCode .

unspecifiedFailure The reason for the failure does not appear elsewhere in this
list.

messageNotSupported This valid message type is not supported by the recipient.

decodingFailure An error was encountered during the DER decoding process
on the message.

invalidCertificateCRLorBCI A certificate, CRL, or BCI necessary to process this message
was not valid (for a reason not specified elsewhere in this
table). The ErrorThumb field identifies the invalid
certificate, CRL, or BCI. Additional detail about this
ErrorCode appears in Table 23 on page 133.

expiredCertificateCRLorBCI A certificate, CRL, or BCI necessary to process this message
has expired. The ErrorThumb field identifies the invalid
certificate, CRL, or BCI. Additional detail about this
ErrorCode appears in Table 23 on page 133.

revokedCertificateCRLorBCI A certificate, CRL, or BCI necessary to process this message
has been revoked. The ErrorThumb field identifies the
invalid certificate, CRL, or BCI.

missingCertificateCRLorBCI A certificate, CRL, or BCI necessary to process this message
is not available in the recipient’s certificate trusted cache
and was not included in the message. Additional detail about
this ErrorCode appears in Table 23 on page 133.

signatureFailure The digital signature of the message could not be verified.

badMessageHeader The message header cannot be processed.

wrapperMsgMismatch The contents of the message wrapper are inconsistent with
the internal content of the message, for example, the RRPID
does not match.

versionTooOld The version number of the message is too old for the recipient
to process.

versionTooNew The version number of the message is too new for the
recipient to process.

Table 25: Enumerated Values for ErrorCode

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 139

Draft Version 1.0.1

SET Error Processing, continued

ErrorCode (continued)

unrecognizedExtension The message or a certificate contains a critical extension that
the recipient cannot process. The ErrorOID field identifies
the extension. If the extension appears in a certificate, the
ErrorThumb field identifies the certificate.

messageTooBig The message is too big for the recipient to process.

signatureRequired The unsigned version of this message is not valid.

messageTooOld The date of the message is too new old for the recipient to
process.

messageTooNew The date of the message is too new for the recipient to
process.

thumbsMismatch Thumbprints sent in an unsigned request did not match those
returned to the requester checking for substitution attack.

unknownRRPID An unknown RRPID was received.

unknownXID An unknown XID was received.

unknownLIDXID An unknown local identifier was received.

challengeMismatch A challenge sent in a request did not match the challenge in
the response.

Table 25: Enumerated Values for ErrorCode, continued

See also “Table 23” on page 133.

Process Error
message

In general, processing of a SET Error message is at the discretion of the application and
outside the scope of SET. However, a few ErrorCode s warrant special processing:

ErrorCode Processing

versionTooOld or
versionTooNew

See “Backward Compatibility” on page 65.

messageTooOld or
messageTooNew

See “System Clock Differences” on page 66.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 140 as of December 10, 1998

Draft Version 1.0.1

SET Error Processing, continued

Future values
for ErrorCode

The following error conditions were identified after the ASN.1 for version 1.0 was
completed. They are currently defined as constants mapping to unspecifiedFailure. In a
future version of the ASN.1, these values will be added to the ENUMERATED ErrorCode .
Application developers are encouraged to use these symbolic names in place of
unspecifiedFailure.

badOAEPBlock The OAEP block is not correctly formatted or was encrypted
with the wrong public key.

baggageLinkageFailure The linkage between the baggage and the message could not
be verified.

decryptionFailure The message could not be successfully decrypted.

idempotencyFailure An idempotent request containing identical identifiers as a
previous request is not bit-wise identical to the prior
message.

keyUnavailable A cryptographic key necessary to process this message is
unavailable.

typeMismatch The object identifier of contentType of a structure could not
be verified did not match the value expected.

unsupportedAlgorithm The hashing or encryption algorithm is not supported.

unsupportedBrand A request was made for a brand ID that is not supported.

requestTypeMismatch The RequestType received in a response message does not
match the RequestType in the corresponding request.

unrecognizedField The application has received a field that it cannot process.

missingData An optional field was omitted from the message, but the
processing conditions require it to be present.

requestResponseMismatch Date of response does not match that of request.

Table 26: Future Enumerated Values for ErrorCode

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 141

Draft Version 1.0.1

Section 2
Cryptographic Processing

Overview

Organization This section describes processing for the following treatments and operators:

Processing Descriptions Page
Keyed-Hash (HMAC) 145

DigestedData (DD) 146

Linkage (L) 149

Signature (S) 151

Signature Only (SO) 159

Optimal Asymmetric Encryption Padding (OAEP) 165

EnvelopedData 171

Asymmetric Encryption (E) 177

Extra Asymmetric Encryption with Linkage (EXL) 179

Asymmetric Encryption with Integrity (EH) 182

Extra Asymmetric Encryption with Integrity (EXH) 184

Symmetric Encryption (EK) 187

Simple Encapsulation with Signature (Enc) 191

Simple Encapsulation with Signature and Provided Key (EncK) 195

Extra Encapsulation with Signature (EncX) 199

Simple Encapsulation with Signature and Baggage (EncB) 204

Extra Encapsulation with Signature and Baggage (EncBX) 209

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 142 as of December 10, 1998

Draft Version 1.0.1

Keyed-Hash

HMAC The keyed-hash operator, HMAC(t, k), corresponds to the 160-bit HMAC-SHA-1 hash of t
using the secret k. This function is used as the blinding function to protect the account
number in the Cardholder certificate and to create transaction stains.

Step Action

1 Receive as input:

t the content to be hashed

k a secret key for cryptographic enhancement of t

2 Create a buffer containing 64 bytes with 0x36 repeated 64 times.

3 Create a buffer containing 64 bytes with 0x5c repeated 64 times.

4 Append zeros to the end of k to create a 64-byte buffer (for example, if k is of
length 20 bytes, append 44 bytes of 0x00).

5 Compute bit-wise exclusive-or of the result of Step 4 and the result of Step 2.

6 Append t to the result of Step 5.

7 Compute the SHA-1 hash of the result of Step 6.

8 Compute bit-wise exclusive-or of the result of Step 4 and the result of Step 3.

9 Append the result of Step 7 to the result of Step 8.

10 Compute the SHA-1 hash of the result of Step 9.

11 Return the result of Step 10.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 143

Draft Version 1.0.1

DetachedDigest

DD The DetachedDigestedData operator DD(t) corresponds to a 160-bit SHA-1 hash of t
embedded in a PKCS DigestedData sequence. t is not included in the content component of
ContentInfo.

Each type of content digested in SET is identified by a unique object identifier in the
contentType component of ContentInfo.

Compose
DetachedDigest

Step Action

 1 Receive as input:

 t the content to be digested

 type an object identifier for the content of t

 2 Compute the SHA-1 hash of t, including the tag and length octets.

 3 Construct and return DigestedData:

ddVersion 0

digestAlgorithm algorithm id-sha1

parameters NULL

contentInfo contentType type

digest the result of Step 2

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 144 as of December 10, 1998

Draft Version 1.0.1

DetachedDigest, continued

Verify
DetachedDigest

Step Action

1 Receive as input:

 t the content to be verified

 d an instance of DigestedData

 type an object identifier for the content that was digested

2 Validate the following contents of d:

ddVersion 0

digestAlgorithm algorithm id-sha1

parameters NULL

contentInfo contentType type

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

error Code ddVersion decodingFailure

digestAlgorithm unsupportedAlgorithm

contentType typeMismatch

errorOID for digestAlgorithm, the algorithm field

3 Compute the SHA-1 hash of the complete DER representation of t, including the
tag and length octets.

4 Compare the results of Step 3 to d.digest. If the comparison fails, return a status
of failure.

5 Return a status of success and the following:

 type d.contentType

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 145

Draft Version 1.0.1

DetachedDigest, continued

Sample code:
DD

The following ASN.1 sample code shows how DigestedData is constructed as the result of
DD(t).

detachedDigest DigestedData ::= {
ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType type
},
digest "SHA-1 hash of t "

}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 146 as of December 10, 1998

Draft Version 1.0.1

Linkage

L The linkage operator, L(t1, t2), corresponds to a sequence of t1 and a PKCS #7 DigestedData
component represented by DD(t2). It links t1 to t2, but does not include the content of t2.

Compose
Linkage

Step Action

1 Receive as input:

 t1 the content that is linked to t2

 t2 the content whose digest is concatenated to t1

 type an object identifier for the content of t2

2 Invoke “Compose DetachedDigest” on page 146 with the following input:

 t t2

 type type

3 Append the result of Step 2 to t1.

4 Return the result of Step 3.

Verify Linkage
Step Action

1 Receive as input:

 d a structure containing:

 t1 the content that is linked to t2

 t2 an instance of DigestedData

 t2 the content whose digest is concatenated to t1

 type an object identifier for the content of t2

2 Invoke “Verify DetachedDigest” on page 147 with the following input:

 t t2

 d d.t2

 type type
 If the result is failure, return a status of failure.

3 Return a status of success and the following:

 type the value of type returned in Step 2

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 147

Draft Version 1.0.1

Linkage, continued

Sample code: L The following ASN.1 sample code shows how to link two values.

linkage Linkage ::= {
t1 t1 ,
t2 {

ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType type
},
digest "SHA-1 hash of t2 "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 148 as of December 10, 1998

Draft Version 1.0.1

Signature

S The Signature operator, S(s, t), corresponds to PKCS #7 SignedData. SignedData uses the
private key of s to sign t and includes t in the content of the SignedData type. The digital
signature method employed by SET uses an encrypted hash. A digital signature operation is
performed by encrypting the SHA-1 hash of t, with the RSA private key of signer s.

Authenticated
attributes

SET PKCS #7 SignedData digital signature operations are always performed on values that
are the DER representations of values of ASN.1 types. SignedData signature operations are
never performed on arbitrary octet strings, such as ASCII text files or random strings with no
consistent internal structure, so the PKCS #7 data content type is never used. Instead one of
the SET-specific content object identifiers is used. In such situations, when the content type
data is not used , PKCS #7 requires that at least two authenticated attributes be included in
the actual content that is signed. The parameterized types, S{} and SO{}, both represent
SignedData in SET, and both require authenticated attributes.

Two attributes, contentType and messageDigest, are always included in the
authenticatedAttributes signed in SET. For SignedData, a message digest results from the
application of the PKCS #7 message-digesting process to some SET ASN.1 type, the content
to be signed. For SET SignedData, the content to be signed is always the complete DER
representation, including the tag and length octets, of two authenticated attributes tightly
coupled with the content component of ContentInfo.

Note: The message digest generated for authenticatedAttributes is computed over the inner
AttributeSeq type and does not include the outer tag [2] and its length.

The initial input to the message-digesting process is the DER representation of the content
component of the ContentInfo sequence. ContentInfo binds a contentType component object
identifier to the type in its content component. In SET, each SignedData content type is
uniquely named by an object identifier. Since this value is not protected directly against a
substitution attack, it is also included in the authenticatedAttributes.

� The contentType attribute shall specify an object identifier that matches the value in the
contentType component of the ContentInfo sequence.

� The messageDigest attribute contains the value of the digested content component of
ContentInfo.

 Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 149

Draft Version 1.0.1

 Signature, continued

 Number of
signers

 The definition of the SignerInfos sequence in PKCS #7 allows any number of signers to be
included in the collection, providing one SignerInfo per signer.

 SET PKCS #7 SignedData requires one signer for all messages except CertReq and
CertInqReq , which require two signers when used for certificate renewal. It is constrained
to permit only one or two signers, so that the general processing requirements of PKCS #7
are simplified in SET.

 In the SignerInfo component of SignerInfos, both the authenticatedAttributes and the
unauthenticatedAttributes components are specified as optional. In SET:

� The authenticatedAttributes component is always present, and it is this value that is signed.
shall be included in the message-digesting process.

� The unauthenticatedAttributes component of the SignerInfo sequence is always absent, and
never appears in an encoding of a value of SignedData.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 150 as of December 10, 1998

Draft Version 1.0.1

Signature, continued

Compose
SignedData (S)

Step Action

1 Receive as input:

s the signature certificate of the signer (except during
certificate registration, as described in Step 7)

s2 a second signature certificate (optional)

t the content to be signed

type an object identifier for the content of t

certs additional certificate(s) to be included in message
(optional) (that is, additional to those required to validate
the signature: key-encryption certificates and newly
generated certificates)

crls CRLs to be included in message (optional)

2 Compute SHA-1 hash of t.

3 Construct authenticatedAttributes with two entries:

type contentType

value type

type messageDigest

value the result of Step 2

4 Compute SHA-1 hash of the contents of the DER-encoding of the AttributeSeq
identified by authenticatedAttributes generated in Step 3. Note: Do not include
the outer tag [2] and its length in the hash.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 151

Draft Version 1.0.1

Signature, continued

Compose SignedData (S) (continued)

Step Action

5 Sign the result of Step 4 using the private key corresponding to s (or s2 for a
second signature).

6 Verify the result of Step 5. (The validation method is at the discretion of the
application developer.) If the verification fails, abort processing.

Note: In a fully debugged system, this is an indication that the signature
generation process is under attack to try to determine the private key.

7 Construct SignerInfo:

siVersion 2

issuerAndSerial
Number

the issuer and serialNumber fields of s (or s2 for a
second signature)

During certificate registration, signatures are generated
without a certificate to authenticate the public key. In
this event, encode issuerAndSerialNumber as follows:

issuer RDNSequence a
SEQUENCE
with zero
items

serialNumber 0

See “Sample code: signature without certificate” on
page 158.

digestAlgorithm algorithm id-sha1

parameters NULL

authenticated
Attributes

the result of Step 3

digestEncryption algorithm id-rsaEncryption

Algorithm parameters NULL

encryptedDigest the result of Step 5

8 If s2 is specified, repeat Steps 5, 6 and 7 for s2.

9 If certs is not provided, initialize certs so that it contains zero entries.

Add the following to certs :

� the certificate chain of any certificate in certs ;
� s and its certificate chain;
� if s2 is specified, s2 and its certificate chain;
� all root certificates that are previous generations of any root certificates in

certs (to the generation of the root certificate specified in Appendix R).

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 152 as of December 10, 1998

Draft Version 1.0.1

Signature, continued

Compose SignedData (S) (continued)

Step Action

10 If crls is not provided, initialize crls so that it contains zero entries.

If this is a response message containing a BrandCRLIdentifier, add all certificate
revocation lists contained on it to crls .

11 If this is a response message and the request contained Thumbprints, optionally
remove any entries from certs and crls whose Thumbprint appears in the
request.

12 Construct and return SignedData:

sdVersion 2

digestAlgorithms algorithm id-sha1

parameters NULL

contentInfo contentType type

content t

certificates certs

crls crls

signerInfos the result of Step 7 (with two entries if s2 is provided;
otherwise, one entry)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 153

Draft Version 1.0.1

Signature, continued

Verify
SignedData (S)

Step Action

1 Receive as input:

d an instance of SignedData

 type an object identifier for the content that was signed

 unauthOK a flag indicating whether an unauthorized signature is
permissible (optional)

2 Invoke “Verify SignedData (SO)” on page 160 with the following input:

t d.contentInfo.content

d d

 type type

 unauthOK unauth OK

3 Return the following:

 t d.contentInfo.content

 type the value of type returned in Step 2

 si the value of si returned in Step 2

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 154 as of December 10, 1998

Draft Version 1.0.1

Signature, continued

Sample code: S The following ASN.1 sample code shows how SignedData is constructed for the signature
operator S (s, t). (A separate sample shows how issuerAndSerialNumber is constructed when
a signature is generated without a certificate.)

signature SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type ,
content t

},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type
},
{ type messageDigest ,
 value " SHA-1 hash of t "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 155

Draft Version 1.0.1

Signature, continued

Sample code:
signature
without
certificate

The following ASN.1 sample code shows how issuerAndSerialNumber is constructed when a
signature is generated without a certificate to authenticate the public key. The DER encoding
is shown as comments.

noCertificate IssuerAndSerialNumber ::= { -- 30 05
 issuer rdnSequence : {}, -- 30 00
 serialNumber 0 -- 02 01 00
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 156 as of December 10, 1998

Draft Version 1.0.1

Signature Only

SO The signature only operator, SO(s, t), corresponds to PKCS #7 external signature
SignedData. External signature SignedData uses the private key of s to sign t and does not
include t in the content of the SignedData type.

See “Signature” on page 151 for information that applies to both SignedData types, S{} and
SO{}.

Compose
SignedData (SO)

Step Action

1 Receive as input:

s the signature certificate of the signer (except during
certificate registration, as described in Step 7)

s2 a second signature certificate (optional)

t the content to be signed

type an object identifier for the content of t

certs additional certificate(s) to be included in message
(optional)

crls CRLs to be included in message (optional)

2 to 11 Perform Steps 2 through 11 of “Compose SignedData (S)” on page 153.

12 Construct and return SignedData:

sdVersion 2

digestAlgorithms algorithm id-sha1

parameters NULL

contentInfo contentType type

certificates certs

crls crls

signerInfos the result of Step 7 (with two entries if s2 is provided;
otherwise, one entry)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 157

Draft Version 1.0.1

Signature Only, continued

Verify
SignedData (SO)

Step Action

1 Receive as input:

t the content that was signed

d an instance of SignedData

 type an object identifier for the content that was signed

 unauthOK flag indicating whether an unauthenticated signature
is valid (optional)

2 Validate the following contents of d:

sdVersion 2

digestAlgorithms algorithm id-sha1

parameters NULL

contentInfo contentType type

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

error Code sdVersion decodingFailure

digestAlgorithm unsupportedAlgorithm

contentType typeMismatch

errorOID for digestAlgorithm, the algorithm field

3 Create an untrusted cache and populate it with d.certs and d.crls.

4 If type appears in Table 27 on page 163, extract bci from t as specified in the
second column of the table.

5 Invoke “Verify BCI” on page 126 with the following input:

newBci result of Step 4, if any

brand the brand field of
d.SignerInfo.issuerAndSerialNumber.issuer.
organizationName

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 158 as of December 10, 1998

Draft Version 1.0.1

Signature Only, continued

Verify SignedData (SO) (continued)

Step Action

6 Validate the following contents of d.signerInfos:

siVersion 2

digestAlgorithm algorithm id-sha1

parameters NULL

digestEncryption algorithm id-rsaEncryption

Algorithm parameters NULL

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

error Code siVersion decodingFailure

digestAlgorithm unsupportedAlgorithm

digestEncryption
Algorithm

unsupportedAlgorithm

errorOID for digestAlgorithm or digestEncryptionAlgorithm, the
algorithm field

7 Compute SHA-1 hash of t.

8 Validate the following contents of d.signerInfos.authenticatedAttributes:

type contains an entry for contentType and an
entry for messageDigest

value for contentType d.contentInfo.contentType

value for messageDigest result of Step 7

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

error Code invalidSignature

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 159

Draft Version 1.0.1

Signature Only, continued

Verify SignedData (SO) (continued)

Step Action

9 If d.signerInfos.issuerAndSerialNumber indicates that a signature was performed
without a certificate to authenticate the public key:
� If unauthOK is TRUE and this is the first signature without a certificate, save

this instance of d.signerInfos to return and skip to Step 14.

� Otherwise, invoke “Create Error Message” on page 137 with the following
input:

error Code invalidSignature

10 Locate the signature certificate:

a. Search the trusted cache for a certificate whose issuer and serialNumber
matches d.signerInfos.issuerAndSerialNumber.

b. If no certificate was found, search the untrusted cache for a certificate
matching the same criteria. If found, invoke “Verify Certificate” on page
131 with the following input:

cert the certificate from the untrusted cache

If no certificate was found, invoke “Create Error Message” on page 137 with the
following input:

error Code missingCertificateCRLorBCI

11 Compute SHA-1 hash of the contents of the DER-encoding of the AttributeSeq
identified by d.signerInfos.authenticatedAttributes.

Note: Do not include the outer tag [2] and its length in the hash.

12 Decrypt d.signerInfos.encryptedDigest using the public key of the certificate
obtained in Step 10.

13 Compare the results of Step 11 to the results of Step 12. If the values are
different, invoke “Create Error Message” on page 137 with the following input:

error Code invalidSignature

14 If unauthOK is TRUE and if there is a second instance of d.signerInfos, repeat
Steps 6 through 13.

15 Return the following:

type d.contentInfo.contentType

si any unvalidated signerInfo from Step 9

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 160 as of December 10, 1998

Draft Version 1.0.1

Signature Only, continued

BCI location The location of the Brand CRL Identifier depends on the contentType of the message as
defined in Table 27.

Content type Location of BCI in t
id-set-content-AuthResTBS AuthResTBS.t1.brandCRLIdentifier

id-set-content-AuthResTBSX AuthResTBSX.authResTBS.t1.brandCRLIdentifier

id-set-content-AuthRevResData AuthRevResData.brandCRLIdentifier

id-set-content-AuthRevResTBS AuthRevResTBS.t1.brandCRLIdentifier

id-set-content-BCIDistributionTBS BCIDistribution.BCIDistributionTBS.
BrandCRLIdentifier

id-set-content-CapResData CapResData.brandCRLIdentifier

id-set-content-CapRevResData CapRevResData.brandCRLIdentifier

id-set-content-CardCInitResTBS CardCInitResTBS.brandCRLIdentifier

id-set-content-CertResData CertResData.brandCRLIdentifier

id-set-content-CredResData CredResData.brandCRLIdentifier

id-set-content-CredRevResData CredRevResData.brandCRLIdentifier

id-set-content-Me-AqCInitResTBS Me-AqCInitResTBS.brandCRLIdentifier

id-set-content-PCertResTBS PCertResTBS.brandCRLIdentifierSeq.
 brandCRLIdentifier

id-set-content-PInitResData PInitResData.brandCRLIdentifier

id-set-content-PResData PResData.brandCRLIdentifier

id-set-content-RegFormResTBS RegFormResTBS.brandCRLIdentifier

Table 27: BrandCRLIdentifier Location

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 161

Draft Version 1.0.1

Signature Only, continued

Sample code:
SO

The following ASN.1 sample code shows how SignedData is constructed for the signature
only operator, SO(s, t).

signature SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type ,
},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type
},
{ type messageDigest ,
 value " SHA-1 hash of t "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 162 as of December 10, 1998

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding

Purpose The purpose of OAEP is to ensure that individual pieces of a message cannot be extracted
from a PKCS #7 block. There are cryptoanalytic techniques that make some bits of a
message easier to determine than others. OAEP randomly distributes the bits of a PKCS #7
block, making each bit equally difficult to extract.

Algorithm
description

The E, EX, EXL, EH, and EXH encryption primitives combine RSA encryption and OAEP.
SET uses OAEP to provide “extra” protection of the account information associated with the
Cardholder, Merchant, or Acquirer in the digital envelope.

This section provides a brief description of how to implement OAEP to support its “extra
encryption” and “extra decryption” operators as they are used in SET. The reader is
encouraged to supplement this description with the OAEP information provided in SET Book
3: Formal Protocol Definition.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 163

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding, continued

Create OAEP
block

SET “extra encryption” The creation of an OAEP block involves the following processing
steps:

Step Action

1 Receive as input:

BC Block contents byte

DEK DES encryption key

X “Extra encrypted” data (optional; included for values of BC other
than 0x00 or 0x80)

HD Integrity hash (optional; included for values of BC greater than
or equal to 0x80)

2 Form the Actual Data Block, ADB, based on the value of BC as follows:

Value of BC Formation of ADB

0x00 DEK

> 0x00 and < 0x80 DEK | X

0x80 DEK | HD

> 0x80 DEK | HD | X

3 Compute the Data Block, DB, as follows:

BT 0x03

V 0x00 0x00 0x00 0x00 0x00 0x00 0x00 (7 bytes of zero)

DB BT | BC | V | ADB

4 Pad the result of Step 3 with trailing zeros to form a string with a total length of
111 bytes.

5 Generate a random 16-byte string E-Salt, and compute H1(E-Salt) as follows:

SHA-1(E-Salt | 0) | SHA-1(E-Salt | 1) | SHA-1(E-Salt | 2) | SHA-1(E-Salt | 3) |
SHA-1(E-Salt | 4) | SHA-1(E-Salt | 5).

Truncate the string to 111 bytes by discarding the nine trailing bytes.

6 Perform an exclusive-or on the results of Step 4 and the results of Step 5.

7 Compute the SHA-1 hash of the results of Step 6. Discard the leading four bytes
to form a sixteen-byte string.

8 Perform an exclusive-or on E-Salt (from Step 5) and the results of Step 7.

9 Generate a single-byte random value between 0x01 and 0x7F.

10 Concatenate the results of Step 9, Step 6 and Step 8.

11 Return the result of Step 10.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 164 as of December 10, 1998

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding, continued

Process OAEP
block

SET “extra decryption” Receipt of an OAEP block requires the following steps:

Step Action

1 Receive the OAEP block as input.

2 Extract values from the results of Step 1 as follows:

I byte 1

A bytes 2 through 112

B bytes 113 through 128

3 Verify that I is neither 0x00 nor 0x80 in the range 0x01 to 0x7F. If this
verification fails, invoke “Create Error Message” on page 137 with the
following input:

errorCode badOAEPBlock

4 Compute the SHA-1 hash of A. Discard the leading four bytes to form a sixteen-
byte string.

5 Perform an exclusive-or on B and the results of Step 3 to produce E-Salt.

6 Compute H1(E-Salt) as follows:

SHA-1(E-Salt | 0) | SHA-1(E-Salt | 1) | SHA-1(E-Salt | 2) | SHA-1(E-Salt | 3) |
SHA-1(E-Salt | 4) | SHA-1(E-Salt | 5).

Truncate the string to 111 bytes by discarding the nine trailing bytes.

7 Perform an exclusive-or on A and the results of Step 6.

8 Extract values from the results of Step 7 as follows:

BT byte 1

BC byte 2

V bytes 3 through 9

ADB bytes 10 through 111

9 Verify that BT contains a value of 0x03, BC contains a value either in the range
0x00 to 0x05 or in the range 0x80 to 0x85, and that V is zero. If any of these
verifications fail, invoke “Create Error Message” on page 137 with the
following input:

errorCode badOAEPBlock

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 165

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding, continued

Process OAEP block (continued)

Step Action

10 Extract values from ADB, based on the value of BC as follows:

� Extract the first eight bytes into DEK.

� If BC is greater than or equal to 0x80, extract the next 20 bytes into HD.

� If BC is in the range 0x01 to 0x05 or in the range 0x81 to x85, extract the
appropriate value of X as indicated in the following table.

Value of BC Content of X

0x01 or 0x81 PANData

0x02 or 0x82 PANData0

0x03 or 0x83 PANToken

0x04 or 0x84 PANOnly

0x05 or 0x85 AcctData

11 Return the following:

BC Block Contents byte

DEK DES encryption key

X “extra encrypted” data (optional; included for values of BC other
than 0x00 or 0x80)

HD integrity hash (optional; included for values of BC greater than
or equal to 0x80)

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 166 as of December 10, 1998

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding, continued

Processing Figure 11 illustrates the processing flow for OAEP as it is used in SET.

B
(16 bytes)

R
(128 bytes)

I
(1 byte)

Random != 0
(lower 7 bits)

DEK
(8 bytes)

HD
(20 bytes)

X
(Varies)

|

ADB
V

(7 bytes)
BC

(1 byte)
BT

(1 byte)

|

DB H1 (E-Salt)

A

H1 E-Salt
(16 bytes)

H2 H2 (A)

|

PDB

|

RSA Encrypt

|

0
(1 bit) LEGEND

|

|

H2

RSA Encrypt

X

Exclusive 'or'

Concatenate

Hashing

RSA

Data

Figure 11: OAEP Processing Flow

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 167

Draft Version 1.0.1

Optimal Asymmetric Encryption Padding, continued

Encoding of DB Data present in data block (DB) fields is not formatted with the usual DER encoding method,
in order to save space. The format used for the DB is defined here.

For all of the definitions, all fields shall be present.

Only fields from the ASN.1 definition atomic (in the sense of ASN.1) data elements are
present in DB. Each element is encoded within DB in the canonical form used by
DER-encoding, but without tag and length octets. When transferring data from DER-encoded
format to DB, add pad characters (0x00) to the end of the data; when transferring from DB to
DER-encoded format, strip all pad characters from the end of the data.

To understand the format of a DB field, examine the ASN.1 used to define the field for
signature purposes. Determine the matching DER-encoded wire format, and store the field in
DB accordingly. Determine the corresponding ASN.1 type, and store the field in DB
according to the following table, which summarizes the DER format of field types used in
SET extra-encrypted data:

ASN.1 Type DB Encoding

VisibleString ASCII string, first character in lowest-numbered position, padded with
blanks (0x20).

NumericString ASCII string, first character in lowest-numbered position, padded with
blanks (0x20).

OCTET STRING Binary byte string in lowest-numbered position, padded with bytes of
zero (0x00).

For more
information

Additional information about the encoding of specific extra-encryption data formats in the
OAEP block is found in SET Book 3.

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 168 as of December 10, 1998

Draft Version 1.0.1

EnvelopedData

Compose
EnvelopedData

The processing steps that follow are shared by E, EX, EXL, EH, and EXH, all of which
produce a PKCS #7 EnvelopedData block.

Step Action

1 Receive as input:

 r the key encryption certificate of the recipient

 t the content to be encrypted

 p the parameter receiving extra encryption protection (optional)

 link Boolean value indicating if linkage is required (default
FALSE)

 h Boolean value indicating if hash is required (default FALSE)

 type-t an object identifier for the content of t

 type -p an object identifier for the content of p (optional)

2 If p is not provided, continue with Step 5.

If link is FALSE, continue with Step 4.

Generate a fresh nonce and put it into the EXNonce field of p.

3 To link tuple t with parameter p, invoke “Compose Linkage” on page 149 with
the following input:

t1 t

t2 the result of Step 2

type type-p

4 Format p for insertion into the “extra encrypted data” portion of OAEP.

5 If p is provided and link is TRUE, select the result from Step 3; otherwise,
select t.

6 Generate a fresh symmetric DES key (or select a key in accordance with “Reuse
of symmetric DES keys ” on page 91).

7 Generate an eight-byte DES-CBC initialization vector.

8 Encrypt the result from Step 5 with the DES key from Step 6 and the
initialization vector from Step 7 using DES-CBC mode following the standard
padding rule described on page 87.

9 If h is TRUE, compute SHA-1 hash of the result of Step 5.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 169

Draft Version 1.0.1

EnvelopedData, continued

Compose EnvelopedData (continued)

Step Action

10 Determine the value of BC as follows:

a. Initialize the value to 0x00.

b. If type- p is provided, add the value from the following table based on
type-p :

0x01 id-set-content-PANData

0x03 id-set-content-PANToken

0x04 id-set-content-PANOnly

Otherwise, if p is provided, add the value from the following table based on
the contents of p.

0x02 PANData0

0x05 AcctData

c. If h is TRUE, add 0x80

11 Invoke “Create OAEP block” on page 166 with the following input:

BC the result of Step 10

DEK the result of Step 6

X the result of Step 4 (if p is provided)

HD the result of Step 9 (if h is TRUE)

12 Encrypt the result from Step 11 using the public key from r.

13 Construct RecipientInfo:

riVersion 0

issuerAndSerial
Number

the issuer and serialNumber fields of r

keyEncryption algorithm rsaOAEPEncryptionSET

Algorithm parameters NULL

encryptedKey the result of Step 12

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 170 as of December 10, 1998

Draft Version 1.0.1

EnvelopedData, continued

Compose EnvelopedData (continued)

Step Action

14 Construct EncryptedContentInfo:

contentType type -t

contentEncryption algorithm id-desCBC

Algorithm parameters the result of Step 7

encryptedContent the result of Step 8

15 Construct and return EnvelopedData:

edVersion 1

recipientInfos the result of Step 13

encryptedContentInfo the result of Step 14

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 171

Draft Version 1.0.1

EnvelopedData, continued

Verify
EnvelopedData

The processing steps that follow are shared by E, EX, EXL, EH, and EXH, all of which
produce a PKCS #7 EnvelopedData block.

Step Action

1 Receive as input:

 d an instance of EnvelopedData

 type -t an object identifier for the content that was
encrypted

 type-p an object identifier for the parameter that received
extra encryption protection (optional)

2 Validate the following contents of d:

edVersion 1

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

error Code decodingFailure

3 Validate the following contents of d.recipientInfos:

riVersion 0

keyEncryption algorithm rsaOAEPEncryptionSET

Algorithm parameters NULL

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

errorCode riVersion decodingFailure

keyEncryption
Algorithm

unsupportedAlgorithm

errorOID for keyEncryptionAlgorithm, the algorithm field

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 172 as of December 10, 1998

Draft Version 1.0.1

EnvelopedData, continued

Verify EnvelopedData (continued)

Step Action

4 Validate the following contents of d.encryptedContentInfo:

contentType type-t

contentEncryption
Algorithm

algorithm id-desCBC

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input based on the field that failed:

errorCode contentType typeMismatch

algorithm unsupportedAlgorithm

errorOID the algorithm field

5 Locate the key pair for the certificate identified by
d.recipientInfos.issuerAndSerialNumber and use the private key to decrypt
d.recipientInfos.encryptedKey. If the private key is no longer available, invoke
“Create Error Message” on page 137 with the following input:

errorCode keyUnavailable

errorThumb the Thumbprint of the certificate (if available)

6 Invoke “Process OAEP block” on page 167 with the result of Step 5 as input.

7 Using DEK from the result of Step 6 and the DES-CBC initialization vector in
d.encryptedContentInfo.contentEncryptionAlgorithm.parameters,
decrypt d.encryptedContentInfo.encryptedContent using DES-CBC mode.
Validate and discard the padding. If the padding is not valid, invoke “Create
Error Message” on page 137 with the following input:

errorCode decryptionFailure

8 If BC from the result of Step 6 is greater than or equal to 0x80, compute the
SHA-1 hash of the result of Step 7. Compare this hash to HD from the result of
Step 6. If the values are not the same, invoke “Create Error Message” on
page 137 with the following input:

errorCode decryptionFailure

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 173

Draft Version 1.0.1

EnvelopedData, continued

Verify EnvelopedData (continued)

Step Action

9 If BC from the result of Step 6 is not 0x00 or 0x80 and the result of Step 7 is an
instance of DigestedData, invoke “Verify Linkage” on page 149 with the
following input:

d the result of Step 7

t2 the value of X from the result of Step 6

type type-p

If the result is failure, invoke “Create Error Message” on page 137 with the
following input:

errorCode decryptionFailure

10 Extract t from the result of Step 7 as follows:

� If BC from the result of Step 6 is 0x00 or 0x80, the result of Step 7;
� otherwise, extract t1 from the Linkage in the result of Step 7.

11 Return the following:

t the result of Step 10

p X from the result of Step 6 (optional; only if p is
returned in Step 6)

type-t d.encryptedContentInfo.contentType

type-p type from the result of Step 9 (optional; only if p is
returned in Step 6)

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 174 as of December 10, 1998

Draft Version 1.0.1

Asymmetric Encryption

E The asymmetric encryption operator, E(r, t), corresponds to PKCS #7 EnvelopedData of
tuple t encrypted for entity r. This operator consists of applying fast, symmetric, bulk
encryption to t using a secret key and then encrypting that secret key with the recipient’s
public key.

OAEP is used to obfuscate the contents of the PKCS #7 envelope.

Compose E

Step Action

1 Receive as input:

r the key encryption certificate of the recipient

t the content to be encrypted

type an object identifier for the content of t

2 Invoke “Compose EnvelopedData” on page 171 with the following input:

 r r

 t t

link FALSE

h FALSE

 type-t type

3 Return the result of Step 2.

Verify E Invoke “Verify EnvelopedData” on page 174.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 175

Draft Version 1.0.1

Asymmetric Encryption, continued

Sample code: E The following ASN.1 sample code shows how EnvelopedData is constructed as the result of
E(r, t).

envelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted t "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 176 as of December 10, 1998

Draft Version 1.0.1

Extra Asymmetric Encryption with Linkage

EXL The “extra” asymmetric encryption with linkage operator, EXL(r, t, p), consists of applying
fast, symmetric, bulk encryption to t after linking it to p and applying a separate “extra”
process to p, as follows:

� Generate a fresh 20-byte nonce (EXNonce) to foil dictionary attacks on p.
� Link t and p.
� Encrypt the linkage.
� Create an OAEP block including p.
� Encrypt the OAEP block.
� Construct a data structure that includes the encrypted linkage and the encrypted OAEP

block.
In SET’s implementation of this operator, which is achieved by putting p is put inside the
PKCS #7 envelope and t is linked to p prior to encrypting its contents. The secret key and
parameter p are encrypted with the recipient’s public key. OAEP is used to obfuscate the
contents of the RSA envelope.

Compose EXL

Step Action

 1 Receive as input:

 r the key encryption certificate of the recipient

 t the content to be encrypted

 p the parameter receiving extra encryption protection

 type-t an object identifier for the content of t

 type -p an object identifier for the content of p

2 Invoke “Compose EnvelopedData” on page 171 with the following input:

 r r

 t t

 p p

 link TRUE

 h FALSE

 type-t type-t

 type-p type -p

3 Return the result of Step 2.

Verify EXL Invoke “Verify EnvelopedData” on page 174.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 177

Draft Version 1.0.1

Extra Asymmetric Encryption with Linkage, continued

Sample code:
EXL

The following ASN.1 sample code shows how EnvelopedData is constructed as the result of
EXL(r, t, p).

linkage DigestedData ::= {
ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType type-p
},
digest "SHA-1 hash of p"

}

dataTBE SEQUENCE ::= {
t t,
p linkage

}

exEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-t ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted dataTBE "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 178 as of December 10, 1998

Draft Version 1.0.1

Asymmetric Encryption with Integrity

EH The integrity encryption operator, EH(r, t), is similar to E, except that the PKCS #7 envelope
includes a hash of t. It consists of applying fast, symmetric, bulk encryption to t using a
secret key and then encrypting that secret key and the hash with the recipient’s public key.

OAEP is used to obfuscate the contents of the RSA envelope.

Compose EH

Step Action

1 Receive as input:

r the key encryption certificate of the recipient

t the content to be encrypted

type an object identifier for the content of t

2 Invoke “Compose EnvelopedData” on page 171 with the following input:

 r r

 t t

 link FALSE

 h TRUE

 type-t type

3 Return the result of Step 2.

Verify EH Invoke “Verify EnvelopedData” on page 174.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 179

Draft Version 1.0.1

Asymmetric Encryption with Integrity, continued

Sample code:
EH

The following ASN.1 sample code shows how EnvelopedData is constructed as the result of
EH(r, t).

ehEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES symmetric key encrypted t "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 180 as of December 10, 1998

Draft Version 1.0.1

Extra Asymmetric Encryption with Integrity

EXH The “extra” asymmetric encryption with integrity operator, EXH(r, t, p), is similar to EX,
except that the PKCS #7 envelope also includes a hash of t. It consists of applying fast,
symmetric, bulk encryption to t after linking it to p and applying a separate “extra” process to
p, as follows: In SET’s implementation of this operator, p is put inside the PKCS #7
envelope and t is linked to p prior to bulk encrypting its contents. A fresh 20-byte nonce
(EXNonce) is also included to foil dictionary attacks on p. The secret key, the hash of
{t, p}, and parameter p are encrypted with the recipient’s public key.

OAEP is used to obfuscate the contents of the PKCS #7 envelope.
� Generate a fresh 20-byte nonce (EXNonce) to foil dictionary attacks on p.
� Link t and p.
� Encrypt the linkage.
� Create an OAEP block including p and a hash of the linkage.
� Encrypt the OAEP block.
� Construct a data structure that includes the encrypted linkage and the encrypted OAEP

block.

Compose EXH

Step Action

 1 Receive as input:

 r the key encryption certificate of the recipient

 t the content to be encrypted

 p the parameter receiving extra encryption protection

 type-t an object identifier for the content of t

 type -p an object identifier for the content of p

2 Invoke “Compose EnvelopedData” on page 171 with the following input:

 r r

 t t

 p p

 link TRUE

 h TRUE

 type-t type -t

 type-p type -p

3 Return the result of Step 2.

Verify EXH Invoke “Verify EnvelopedData” on page 174.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 181

Draft Version 1.0.1

Extra Asymmetric Encryption with Integrity, continued

Sample code:
EXH

The following ASN.1 sample code shows how EnvelopedData is constructed as the result of
EXH(r, t, p).

linkage DigestedData ::= {
ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType " type-p "
},
digest "SHA-1 hash of p"

}

dataTBE SEQUENCE ::= {
t t ,
p linkage

}

exhEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-t ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted dataTBE "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 182 as of December 10, 1998

Draft Version 1.0.1

Symmetric Encryption

EK The symmetric encryption operator, EK(k, t), encrypts t with the provided key k. Either the
DES or CDMF algorithm may be used.

Compose EK
Step Action

1 Receive as input:

 k a symmetric encryption key

 t the content to be encrypted

 type an object identifier for the content of t

 aid an object identifier for the algorithm that will be used for
cryptographic processing

 The following algorithm identifiers are permitted:

� id-desCBC
� id-desCDMF

2 If aid is id-desCDMF, transform k according to the CDMF requirements.

3 Generate an eight-byte DES-CBC initialization vector.

4 Encrypt t with k and the result of Step 3 using DES-CBC mode following the
standard padding rule described on page 87.

5 Construct EncryptedContentInfo:

contentType type

contentEncryption algorithm aid
Algorithm parameters the result of Step 3

encryptedContent the result of Step 4

6 Construct EncryptedData:

version 0

encryptedContentInfo the result of Step 5

7 Return the result from Step 6.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 183

Draft Version 1.0.1

Symmetric Encryption, continued

Verify EK
Step Action

1 Receive as input:

 k a symmetric encryption key

 d an instance of EncryptedData

 type an object identifier for the content that was encrypted

2 Validate the following contents of EncryptedData:

version 0

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

errorCode decodingFailure

3 Validate the following contents of d.encryptedContentInfo:

contentType type

content
Encryption
Algorithm

algorithm id-desCBC or id-desCDMF

If errors are encountered during the validation process, invoke “Create Error
Message” on page 137 with the following input:

errorCode algorithm unsupportedAlgorithm

contentType typeMismatch

errorOID for algorithm, the algorithm field

4 If d.encryptedContentInfo.contentEncryptionAlgorithm.algorithm is
id-desCDMF:

� If the application does not support CDMF, invoke “Create Error Message” on
page 137 with the following input:

errorCode unsupportedAlgorithm

errorOID the value of algorithm

� otherwise, transform k according to the CDMF requirements.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 184 as of December 10, 1998

Draft Version 1.0.1

Symmetric Encryption, continued

Verify EK (continued)

Step Action

5 Using the result of Step 4 and the initialization vector in
d.encryptedContentInfo.contentEncryptionAlgorithm.parameters,
decrypt d.encryptedContentInfo.encryptedContent using DES-CBC mode.
Validate and discard the padding. If the padding is not valid, invoke “Create
Error Message” on page 137 with the following input:

errorCode decryptionFailure

6 Return the following:

 t the result of Step 5

 type d.encryptedContentInfo.contentType

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 185

Draft Version 1.0.1

Symmetric Encryption, continued

Sample code:
EK

The following ASN.1 sample code shows how EncryptedData is constructed as the result of
EK(k, t).

ekEncryption EncryptedData ::= {
version 0,
encryptedContentInfo {

contentType type ,
contentEncryptionAlgorithm {

algorithm aid ,
parameters cbc8Parameter

},
encryptedContent "Symmetric key k encrypted t "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 186 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature

Enc The simple encapsulation with signature operator, Enc(s, r, t), implements signed then
encrypted messages. It corresponds to an instance of PKCS #7 SignedData encapsulated in
EnvelopedData.

Compose Enc

Step Action

 1 Receive as input:

 s the signature certificate of the signer

 s2 a second signature certificate (optional)

 r the key encryption certificate of the recipient

 t the content to be encapsulated

type-t an object identifier for the content of t

type-s an object identifier for the signed content of t

certs additional certificate(s) to be included in message (optional)

2 Invoke “Compose SignedData (S)” on page 153 with the following input:

s s

s2 s2

t t

type type- s

certs certs

3 Invoke “Compose E” on page 177 with the following input:

r r

t the result of Step 2

type type- t

4 Return the result of Step 3.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 187

Draft Version 1.0.1

Simple Encapsulation with Signature, continued

Verify Enc

Step Action

 1 Receive as input:

 d an instance of EnvelopedData

 type- t an object identifier for the content that was encapsulated

 type-s an object identifier for the signed content

 unauthOK flag indicating whether an unauthenticated signature is
valid (optional)

2 Invoke “Verify EnvelopedData” on page 174 with the following input:

d d

type -t type-t

3 Invoke “Verify SignedData (S)” on page 156 with the following input:

d t from the result of Step 2

type type-s

unauthOK unauthOK

4 Return the following:

 t t from the result of Step 3

 si si from the result of Step 3

type -t type-t from the result of Step 2

type -s type from the result of Step 3

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 188 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature, continued

Sample code:
Enc

The following ASN.1 sample code shows how SignedData and EnvelopedData are
constructed as the result of Enc(s, r, t).

encSignature SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type-t ,
content t

},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type-t
},
{ type messageDigest ,
 value " SHA-1 hash of t "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 189

Draft Version 1.0.1

Simple Encapsulation with Signature, continued

Sample code:
Enc (continued)

encEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-s ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted encSignature "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 190 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature and Provided Key

EncK The simple encapsulation with signature and provided key operator, EncK(k, s, t),
implements signed messages encrypted with a known, shared, secret key provided by the
sender of a prior message.

Compose EncK

Step Action

 1 Receive as input:

 k a symmetric encryption key

 s the signature certificate of the signer

 t the content to be encapsulated

 type-t an object identifier for the content of t

type-s an object identifier for the signed content of t

 aid an object identifier for the algorithm that will be used for
cryptographic processing

certs additional certificate(s) to be included in message (optional)

2 Invoke “Compose SignedData (S)” on page 153 with the following input:

s s

t t

type type- s

certs certs

3 Invoke “Compose EK” on page 187 with the following input:

 k k

 t the result of Step 2

 type type- t

 aid aid

4 Return the result of Step 3.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 191

Draft Version 1.0.1

Simple Encapsulation with Signature and Provided Key, continued

Verify EncK

Step Action

 1 Receive as input:

 k a symmetric encryption key

 d an instance of EncryptedData

 type- t an object identifier for the content that was encapsulated

 type-s an object identifier for the signed content

2 Invoke “Verify EK” on page 188 with the following input:

 k a symmetric encryption key

d d

type type-t

3 Invoke “Verify SignedData (S)” on page 156 with the following input:

d t from the result of Step 2

type type-s

4 Return the following:

 t t from the result of Step 3

type -t type from the result of Step 2

type -s type from the result of Step 3

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 192 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature and Provided Key, continued

Sample code:
EncK

The following ASN.1 sample code shows how SignedData and EncryptedData are
constructed as the result of EncK(k, s, r, t).

enckSignature SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type-t ,
content t

},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type-t
},
{ type messageDigest ,
 value " SHA-1 hash of t "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 193

Draft Version 1.0.1

Simple Encapsulation with Signature and Provided Key, continued

Sample code:
EncK
(continued)

enckEncryptedData EncryptedData ::= {
version 0,
encryptedContentInfo {

contentType type-s ,
contentEncryptionAlgorithm {

algorithm aid ,
parameters cbc8Parameter

},
encryptedContent "Symmetric key k encrypted enckSignature"

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 194 as of December 10, 1998

Draft Version 1.0.1

Extra Encapsulation with Signature

EncX The extra encapsulation with signature operator, EncX(s, r, t, p), implements two-part signed
messages encrypted with extra encryption.

Compose EncX

Step Action

 1 Receive as input:

 s the signature certificate of the signer

 s2 a second signature certificate (optional)

 r the key encryption certificate of the recipient

 t the content to be encapsulated

 p the parameter receiving extra encryption protection

type-t an object identifier for the content of t

type-s an object identifier for the signed content of t

type-p an object identifier for the content of p

certs additional certificate(s) to be included in message (optional)

2 Generate a fresh nonce and put it into the EXNonce field of p. Append p to t.

3 Invoke “Compose SignedData (SO)” on page 159 with the following input:

s s

s2 s2

t the result of Step 2

type type- s

certs certs

4 Append the results of Step 3 to t.

5 Invoke “Compose EX EnvelopedData” on page 171 with the following input:

r r

t the result of Step 4

p p

link FALSE

h FALSE

type -t type- t

type-p type-p

6 Return the result of Step 5.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 195

Draft Version 1.0.1

Extra Encapsulation with Signature, continued

Verify EncX

Step Action

 1 Receive as input:

 d an instance of EnvelopedData

 type- t an object identifier for the content that was
encapsulated

 type-s an object identifier for the signed content

 type-p an object identifier for the parameter receiving extra
encryption protection

 unauthOK flag indicating whether an unauthenticated signature is
valid (optional)

2 Invoke “Verify EnvelopedData” on page 174 with the following input:

d d.t

type -t type-t

type-p type-p

Designate the value of t returned as m. Note: m has the following format:

 m a structure containing:

 t arbitrary data

 s an instance of SignedData

3 Append p from the results of Step 2 to m.t.

4 Invoke “Verify SignedData (SO)” on page 156 with the following input:

t the result of Step 3

d dm.s

type type-s

unauthOK unauthOK

5 Return the following:

 t m.t

 p p from the result of Step 2

 si si from the result of Step 4

type -t type-t from the result of Step 2

type -s type from the result of Step 4

type-p type-p from the result of Step 2

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 196 as of December 10, 1998

Draft Version 1.0.1

Extra Encapsulation with Signature, continued

Sample code:
EncX

The following ASN.1 sample code shows how EnvelopedData is constructed as the result of
EncX(s, r, t, p).

dataTBS SEQUENCE ::= {
t t ,
p p

}

encxSignatureOnly SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type-t
},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type-t
},
{ type messageDigest ,
 value " SHA-1 hash of dataTBS "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 197

Draft Version 1.0.1

Extra Encapsulation with Signature, continued

Sample code:
EncX
(continued)

dataTBE SEQUENCE ::= {
t t ,
s encxSignatureOnly

}

encXEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-s ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted dataTBE "

}
}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 198 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature and Baggage

EncB The simple encapsulation with signature and baggage operator, EncB(s, r, t, b), implements
signed, encrypted messages with external baggage.

Compose EncB

Step Action

 1 Receive as input:

 s the signature certificate of the signer

 r the key encryption certificate of the recipient

 t the content to be encapsulated

 b the baggage

type-t an object identifier for the content of t

type-s an object identifier for the signed content of t

type-b an object identifier for the content of b

certs additional certificate(s) to be included in message (optional)

2 To link tuple t with b, invoke “Compose Linkage” on page 149 with the
following input:

t1 t

t2 b

type type-b

3 Invoke “Compose Enc” on page 191 with the following input:

 s s

 r r

 t the result of Step 2

type-t type-t

type-s type-s

certs certs

4 Append b to the results of Step 3.

5 Return the result of Step 4.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 199

Draft Version 1.0.1

Simple Encapsulation with Signature and Baggage, continued

Verify EncB

Step Action

 1 Receive as input:

 d a structure containing:

 t an instance of EnvelopedData

 b baggage

 type- t an object identifier for the content that was encapsulated

 type-s an object identifier for the signed content

 type-b an object identifier for the content of the baggage

2 Invoke “Verify Enc” on page 192 with the following input:

d d.t

type-t type-t

type-s type-s

3 Invoke “Verify Linkage” on page 149 with the following input:

d t from the result of Step 2

t2 d.b

type type-b

If the result is failure, invoke “Create Error Message” on page 137 with the
following input:

errorCode baggageLinkageFailure

4 One of the results of Step 2 is t, a linkage. Extract t1 from t.

5 Return the following:

 t the result of Step 4

 b d.b

type -t type-t from the result of Step 2

type -s type-s from the result of Step 2

type -b type from the result of Step 3

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 200 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature and Baggage, continued

Sample code:
EncB

The following ASN.1 sample code shows how result is constructed as the result of EncB(s, r,
t, b).

detachedDigestedBaggage DigestedData ::= {
ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType type-b ,
},
digest "SHA-1 hash of b"

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 201

Draft Version 1.0.1

Simple Encapsulation with Signature and Baggage, continued

Sample code:
EncB
(continued)

dataTBS SEQUENCE ::= {
t t ,
b detachedDigestedBaggage

}

encbSignature SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type-t ,
content dataTBS

},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type-t
},
{ type messageDigest ,
 value " SHA-1 hash of dataTBS "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 202 as of December 10, 1998

Draft Version 1.0.1

Simple Encapsulation with Signature and Baggage, continued

Sample code:
EncB
(continued)

encbEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-s ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted encbSignature "

}
}

encbResult SEQUENCE ::= {
envelope encbEnvelopedData ,
baggage b

}

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 203

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage

EncBX The extra encapsulation with signature and baggage operator, EncBX(s, r, t, b, p),
implements two-part signed messages encrypted with extra encryption and with external
baggage.

Compose EncBX

Step Action

 1 Receive as input:

 s the signature certificate of the signer

 r the key encryption certificate of the recipient

 t the content to be encapsulated

 b the baggage

 p the parameter receiving extra encryption protection

type-t an object identifier for the content of t

type-s an object identifier for the signed content of t

type-p an object identifier for the parameter receiving extra
encryption protection

type-b an object identifier for the content of b

certs additional certificate(s) to be included in message
(optional)

2 To link tuple t with b, invoke “Compose Linkage” on page 149 with the
following input:

t1 t

t2 b

type type-b

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 204 as of December 10, 1998

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage, continued

Compose EncBX (continued)

Step Action

3 Invoke “Compose EncX” on page 199 with the following input:

 s s

 r r

 t the result of Step 2

 p p

type-t type-t

type-s type-s

type-p type-p

certs certs

4 Append b to the results of Step 3.

5 Return the result of Step 4.

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 205

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage, continued

Verify EncBX

Step Action

 1 Receive as input:

 d a structure containing:

 t an instance of EnvelopedData

 b baggage

 type- t an object identifier for the content that was
encapsulated

 type-s an object identifier for the signed content

 type-p an object identifier for the parameter that received extra
encryption protection

 type-b an object identifier for the content of the baggage

2 Invoke “Verify EncX” on page 201 with the following input:

d d.t

type-t type-t

type-s type-s

type-p type-p

3 Invoke “Verify Linkage” on page 149 with the following input:

d t from the result of Step 2

t2 d.b

type type-b

If the result is failure, invoke “Create Error Message” on page 137 with the
following input:

errorCode baggageLinkageFailure

4 One of the results of Step 2 is t, a linkage. Extract t1 from t.

5 Return the following:

 t the result of Step 4

 b d.b

 p p from the result of Step 2

type -t type-t from the result of Step 2

type -s type-s from the result of Step 2

type-p type-p from the result of Step 2

type -b type from the result of Step 3

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 206 as of December 10, 1998

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage, continued

Sample code:
EncBX

The following ASN.1 sample code shows how result is constructed as the result of
EncBX(s, r, t, b, p).

detachedDigestedBaggage DigestedData ::= {
ddVersion 0,
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
contentInfo {

contentType type-b ,
},
digest "SHA-1 hash of b"

}

linkedData SEQUENCE ::= {
t t ,
b detachedDigestedBaggage

}

dataTBS SEQUENCE ::= {
t linkedData ,
p p

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
as of December 10, 1998 Page 207

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage, continued

Sample code:
EncBX
(continued)

encbxSignatureOnly SignedData ::= {
sdVersion 2,
digestAlgorithms {

{ algorithm id-sha1 ,
 parameters NULL
}

},
contentInfo {

contentType type-t
},
certificates { ... },
crls { ... },
signerInfos {

{ siVersion 2,
issuerAndSerialNumber {

issuer s.issuer ,
serialNumber s.serialNumber

},
digestAlgorithm {

algorithm id-sha1 ,
parameters NULL

},
authenticatedAttributes {

{ type contentType ,
 value type-t
},
{ type messageDigest ,
 value " SHA-1 hash of dataTBS "
}

},
digestEncryptionAlgorithm {

algorithm id-rsaEncryption ,
parameters NULL

}
encryptedDigest "Signed authenticatedAttributes"

}
}

}

Continued on next page

Book 2: Programmer’s Guide SET Secure Electronic Transaction Specification
Page 208 as of December 10, 1998

Draft Version 1.0.1

Extra Encapsulation with Signature and Baggage, continued

Sample code:
EncBX
(continued)

dataTBE SEQUENCE ::= {
t linkedData ,
s encbxSignatureOnly

}

encbxEnvelopedData EnvelopedData ::= {
edVersion 1,
recipientInfos {

{ riVersion 0,
issuerAndSerialNumber {

issuer r .issuer ,
serialNumber r .serialNumber

},
keyEncryptionAlgorithm {

algorithm rsaOAEPEncryptionSET ,
parameters NULL

},
encryptedKey " RSA encrypted OAEP block "

}
},
encryptedContentInfo {

contentType type-s ,
contentEncryptionAlgorithm {

algorithm id-desCBC ,
parameters cbc8Parameter

},
encryptedContent " DES encrypted dataTBE "

}

encbxResult SEQUENCE ::= {
envelope encbxEnvelopedData ,
baggage b

}

